
2130 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Leet Usage and Its Effect on Password Security
Wanda Li and Jianping Zeng

Abstract— Text-based passwords have long acted as the
dominating authentication method. Leet, as one of the significant
components in password, has not been paid enough attention
yet. In this paper, we systematically study the presence of Leet
in passwords. We define single and pattern forms of Leet and
propose a matching approach to check whether a user password
contains Leet. We extract the most prevalent counterpart pairs
of Leet manifestations. Afterward, we examine the effect of
Leet in passwords by incorporating Leet transformation into
the probabilistic context-free grammar(PCFG) method to crack
passwords. We construct the first comprehensively analyzed
dictionary of Leets for passwords, which is confirmed suitable
for most datasets by user survey. Experiments on four leaked
password sets demonstrate that distinguished Leet usage accu-
mulates to account for around 1% of the total dataset. Only
5% of high-frequency Leets replacement could increase the
cracking rate by 0.55%. For crackers, incorporating popular
Leets aids to improve password cracking performance. For users,
adopting low-frequency Leets could strengthen their passwords.
This research provides a new perspective to investigate Leet
transformations in passwords.

Index Terms— Password analysis, password attack and protec-
tion, pattern matching.

I. INTRODUCTION

TEXT passwords are especially ubiquitous in authentica-
tion systems and act as the foundation of security policy

for a broad spectrum of online services, such as personal
financial transactions and communications protection. Unfor-
tunately, human users are inclined to choose weak passwords
because it is easier to remember them [7], [20]. Such limited
human memorability leads to poor randomness of passwords,
which makes them the weakest link in the authentication chain
[10], [35]. What makes things worse is the increasing number
of passwords a user has to manage [19]. Therefore, users often
cope by reusing passwords across accounts on different online
services. Consequently, the majority of passwords crowd in a
small portion of password space, which empowers brute-force
or dictionary attacks.

Manuscript received December 5, 2019; revised March 13, 2020 and July 8,
2020; accepted December 22, 2020. Date of publication January 8, 2021;
date of current version February 1, 2021. This work was supported in part
by the National Key Research and Development Program of China under
Grant 2017YFB0803203 and Grant 2016YFB0800101, in part by the Shanghai
Municipal Natural Science Foundation under Grant 15ZR1403700, in part
by the CURE (Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate
Research Endowment) under Grant 19015, and in part by the FPE of
Science and Technology Development Center, Ministry of Education, China,
under Grant 2017A03021. The associate editor coordinating the review of
this manuscript and approving it for publication was Dr. Karen Renaud.
(Corresponding author: Jianping Zeng.)

The authors are with the School of Computer Science, Fudan University,
Shanghai 200433, China, and also with the Engineering Research Center of
Cyber Security Auditing and Monitoring, Ministry of Education, Shanghai
200433, China (e-mail: wdli16@fudan.edu.cn; zjp@fudan.edu.cn).

Digital Object Identifier 10.1109/TIFS.2021.3050066

Most online services nowadays provide password meters or
employ stricter password composition policies to help users
to know the strength of their passwords. Researches have
shown that password meters and composition policies could
work together to help users to choose stronger passwords
[29], [45], [50]. Accurately assessing passwords strength
requires a deep understanding of the exact tactics for users to
construct their passwords. Also, such principles help crackers
perform more efficiently. At the same time, users could intently
avoid using weak methodologies to create passwords with the
awareness of commonly used methodologies.

Critical efforts have been made to unveil the structure of
passwords. The most initial dictionary attacks have proved that
users are in favor of simple dictionary words [39], or at least
phonetically memorable sequences [40] when constructing
passwords. Weir et al. [57] developed a template-based pass-
word model that uses PCFG to describe password structure.
As studies in the underlying distribution of user-generated
passwords have been launched [54], we can see that some
elements in daily life are pervasive, like keyboard sequence
such as “qwert” or “qawsed” [26], personal information like
birthdate and name, e.g., “19801215” and “Mary” [30] and
trivial sequences as “password” and “123456” [31].

This paper studies another common component in pass-
words, i.e., the Leetspeak (Leet, or “1337”). According to
the investigation of state-of-the-art literature, we find that
existing password cracking methods have not yet put enough
attention to Leetspeak usage in passwords. Although some
works mention Leets [1], [6], [17], [47], Leet have not
been analyzed concentratedly, and only a few of Leets are
considered in most cases. Our goal is to find out the most
likely and popular Leet patterns and characters in passwords,
and reveal their effect on password strength, i.e. whether
to incorporate Leet with existing attacking methods could
improve cracking performance. In this work, we choose a
prevalent cracking framework, PCFG [26], [30], [36], [52], [9],
[32], as an example of base cracking methods. This is because
rule-based systems are able to match or outperform other
password guessing tools when the number of allowed guesses
was small [25]. Although deep learning-based methods are
thriving as an alternative recently, we have to point out that
their explainability is too blurred for this work.

The most significant hindrance for us to identify a Leetspeak
is its intricacy nature. The particular grammars, terminologies
and even spellings make Leet rather like a hacker slang. To
tackle this, we utilize a thorough Leet dictionary in cracking
process of several leaked password datasets from websites of
different languages. First, we develop a method to gauge pos-
sible Leetspeak usage in password creation. After analyzing

1556-6021 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 07,2021 at 15:23:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7212-7623
https://orcid.org/0000-0003-3686-1454

LI AND ZENG: LEET USAGE AND ITS EFFECT ON PASSWORD SECURITY 2131

their frequency, we obtain the most popular Leets used in
passwords, both in single and pattern form. It comes out that
many little-known Leets are still commonly used.

Our contributions can be summarized as follows:

• We believe this is the first systematic study of Leetspeak
replacements in passwords with single and pattern forms,
introducing the Leets in passwords by the definition,
detection, dictionary construction, and usage. This work
on Leetspeak transforming quantification and password
cracking could be applied to any other text-based pass-
word datasets from different websites.

• We propose a method to discover both forms of Leet
usage in passwords. The method considers the length of
patterns by choosing a proper threshold in n of n-grams,
which improves the performance.

• We show that Leet method could work as a double-edged
sword in passwords. On the one hand, common Leet
transformations could be easily incorporated into existing
methods like PCFG for password cracking, and enhance
their performance in the long run. On the other hand,
low-frequency Leets could help users to strengthen their
passwords.

The remaining sections are organized as follows.
We describe the related researches in the next section.
In Section III, we cover details of the approach for analyzing
Leet usage in passwords. We describe the password sets,
present the experiment results, and discuss the analysis
method in Section IV. Section V introduces our survey
and the summation of its results. Then we discuss some
implications and limitations of our research in Section VI,
and finally, draw conclusions and point out future work in
Section VII.

II. RELATED WORK

A. Password Study and Role of Leets

Through decades, authentication using text-based pass-
words remains the de facto standard for authentication in
today‘s Internet. However, early researchers like Morris and
Thompson [39] pointed out that passwords are so simple
that always vulnerable to guessing attacks. As a result,
a substantial number of previous works have been done to
understand user-created passwords, measure their strength
and enhance their security. Passwords have many inspiring
characteristics. For instance, Li et al. [31] studied more than
100 million real-life Chinese passwords and presented dif-
ferences between passwords in Chinese and other languages.
Kiesel et al. [28] analyzed several corpora to reveal that dis-
tributions of mnemonic passwords can reach the same strength
against offline attacks with fewer characters. Analysis consid-
ering human intrinsic are also launched, such as habits [24],
general inspirations [49], semantic patterns [51], and security
awareness [48].

Another active research area in recent years is to study
the quality of user’s passwords. As Shannon’s entropy can
somewhat measure random level in cryptology accurately [14],
[43], [10], [27], many other metrics have been introduced, such
as marginal guesswork [43] and marginal success rate [12].

Empirical studies (e.g., [27], [59]) got conveyed to conquer
the measuring problem. Knowing the strength of passwords
is useful to improve password strength meters, an important
tool to help users choose secure passwords. Studies like
[15], [18], [22] analyze a bundle of meters and offer profitable
insights.

All efforts above base on characters or patterns in pass-
words. Leet, as one of the most common phenomena in pass-
words, to which study could shed light on studies of password
analysis, cracking, and strength measurement. Unfortunately,
existing password cracking methods have not yet put enough
attention to Leetspeak usage in passwords. Although [47]
investigated its use via crowd-sourcing, they did not mention
details about Leets, e.g. how many Leets were involved, how
to discover them, and to what extent they could influence the
strength of passwords. Leets have been only acting a minor
part, hiding in the subsisting list. In this work, we want to
analyze Leet usage in passwords comprehensively, and reveal
the scope and extent of its effect.

B. Password Cracking

The discussion of password-cracking strategies comes
almost at the same time as the password itself. For an attacker,
brute force and dictionary attacks are the most basic choices. If
typical users’ habits in the choice of passwords are taken into
account, dictionary attacks will be found effective [39]. As an
effort to diminish redundant work, Oechslin proposed Rainbow
table [41], which reduces by two the number of calculations
needed during cryptanalysis.

Nevertheless, password policy now becomes stricter, pro-
moting the creation of more powerful attacking means. Pass-
word cracking approaches that use dictionaries (i.e., John
the Ripper(JtR) [6] and HashCat [1]), generally use them
to create guesses by using the dictionary entries and then
mangling these entries in some systematic ways. Such methods
generate a limited number of guesses and require relatively
more time. Other than that, various technologies based on
the probabilistic model have been applied. Narayanan and
Shmatikov [40] employed Markov chain to create a proba-
bilistic approach. Castelluccia et al. [16] improved cracking
efficiency by proposing OMEN based on the model in [40].
PCFG proposed by Weir et al. [57] trains part of a revealed
password sets to generate grammars and later, in turn, gener-
ates guesses by this grammar. As probability-threshold graphs
are better tools than guess number graphs [34], it has been
acted as the basis of studies like [9] and enriched from
different perspectives [26], [30], [36], [52].

Most recently, researchers like Melicher et al. [37] and
Hitaj et al. [25] introduced neural networks to guess pass-
words. Liu et al [32] proposed GENPass, which integrates
LSTM with PCFG, to improve matching rate in both one-site
and cross-site tests. Different from traditional ideas, neural
networks hinder the details of generation but output an infinite
number of guesses. Although they could outperform traditional
methods, they have to guess more times, which hinders their
practicality [25].

Authorized licensed use limited to: Tsinghua University. Downloaded on October 07,2021 at 15:23:53 UTC from IEEE Xplore. Restrictions apply.

2132 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

C. Patterns in Passwords

PCFG defines the most essential password pattern(L, S,
and D) to form password templates, and demonstrates how to
“learn” password patterns from known password distributions.
Users are long known to use specific sorts of information in
passwords. Bonneau et al. [11] found from banking customers
that sharing and reusing PINs are primarily based on the
victims’ birthday. Schweitzer et al. [44] investigated how
keyboard patterns are used in passwords. Han et al. [23]
studied the differences between passwords from Chinese and
English-dominant users, mainly considered regional patterns.
Thus, further detailed categories that can better portray how
people choose their passwords are added in PCFG to improve
guessing performance. For instance, Houshmand et al. [26]
added keyboard patterns and multiword patterns (two or more
words in the alphabetic part of a password) systematically to
the context-free grammars used in the probabilistic password
cracking. Li et al. [30] extended the PCFGs method to
be semantics-rich from the perspective of personal informa-
tion, counting personalized characteristics like name, Email
address, and birth date as a new structure in passwords.
Also, researchers like Zeng et al. [60] conducted research
on large-scale password sets and found that lexical sentiment,
primarily, positive and joy type can be utilized as a component
in password patterns. Nevertheless, although transformations
like “password” to “p@ssword” has always been a common
example in the field, only a few pieces of research have put
a real notice to people’s usage of Leetspeak. How Leet is
practiced in password remains a real question that is worth
quantifying, for they still consist of an inevitable part of
password transformation [17]. No empirical study on specific
transformation to the existing passwords has been performed
yet, which motivates us to dig deeper.

III. APPROACH

In this section, we introduce our main process of attacking
with Leet. As a preparation, we create a splitting dictionary
to distinguish Leets in Section III-A, then define Leets in
passwords in Section III-B.

Our approach has three sessions, as shown in Figure 1. Here
we randomly select a half of passwords in each dataset as the
training set to detect Leets and construct PCFG model. In Leet
matching session (Section III-C), we pre-process the training
set and detect Leets in it. This session outputs a dictionary
of the most likely Leets, Top Leets. In the guessing session,
we let PCFG guess on the training set, then leverage Top Leets
to generate the final guessing results. In the cracking session,
we perform attacks on the testing set. The last two sessions
are explained in Section III-D. We describe how to match Leet
and incorporate it into PCFG in detail as follows.

A. Creation of Splitting Dictionary

In order to distinguish possible Leet changes, one password
string should firstly be split into meaningful units and other
remaining segments. Note that passwords generally depend
on individuals’ choices, which can be primarily affected by
people’s native language and living environment; common

Fig. 1. Diagram of the process followed in Leet approach of the guessing
and cracking phase.

dictionaries may not be comprehensive enough to cover all
information. In consideration of this, we create a full dictio-
nary NormDic for the splitting.

In this paper, we use large-scale leaked password sets
from both English and Chinese websites. Thus, in addition to
ordinary English words, Chinese Pinyins and other spellings
like Chinese family names are also included in the dictionary.

The first step of creating NormDic is to combine four
dictionaries D1, D2, D3 and D4. We describe all of them
below inside out.

1) D1: a list of 15,000 English words which are top fre-
quently used in British National Corpus (BNC [5]). BNC is a
100-million-word text corpus of samples of written and spoken
English from a wide range of sources. We selected the words
in D1 based on their occurrences in BNC, so different forms
of words, including single, plural, tenses, might appear in the
dictionaries. For example, “unequal”, “equally”, “equality”,
“unequally” along with “equal” are all included.

2) D2: a list of 399 spellings for 4761 frequently used
Chinese words. Note that many Chinese words share the
same spellings. For instance, “shang” has several meanings,
including “up”, “quotient”, “entropy”, and so on. Hence, we do
not need too much spelling to represent a rich set of common
Chinese words.

3) D3: a list of top 209 frequently used Chinese fam-
ily names. Name information is a common component of
passwords, both in the English context [58] and Chinese
context [30].

4) D4: a list of manually selected entities, such as abbrevi-
ations for famous corporation names, popular Internet slogan.
Some of them are “avon”, “intel”, “sony”, and “volvo”. We add
D4 to NormDic so as to increase its comprehensiveness.

Then, we combine all of the items in D1, D2, D3, D4 and
a frequently used password dataset into the new dictionary
NormDic, which turn out to have more than 11,000 words.

B. Define Leets in Password

Leet (or “1337”), also known as eLeet or Leetspeak, is a
system of modified spellings used primarily on the Internet [2].
It has a system of suffixes and alternate meanings, which is
usually existed as the basis of word modifying. Generally,

Authorized licensed use limited to: Tsinghua University. Downloaded on October 07,2021 at 15:23:53 UTC from IEEE Xplore. Restrictions apply.

LI AND ZENG: LEET USAGE AND ITS EFFECT ON PASSWORD SECURITY 2133

TABLE I

SAMPLE OF LEETDIC

it uses character replacements in ways that play on the
similarity of their glyphs via reflection or other resemblance.
Different online communities together have created many
dialects or linguistic varieties. In this paper, we adopt the most
exhaustive Leet list spreading on the Internet [3] as LeetDic.
It includes 227 possible representations, some of them are
shown in Table I. Note that both sides of representation might
have more than one meaning. For example, “A” can be written
as “4” and “@”, while “S” can be represented by “$” or “5”.
Also, “|” could be interpreted by both “I” and “l”.

To simplify, a Leet’s corresponding letter in the normal
exhibition is referred to as the original word (wo), and po

denotes the original password, which is the password before
the user conducts Leet transformation in it. To put Leet
transformations into effect, we add an additional Leet-like
phrase matching phase and an adaptive-substitution phase after
the primary PCFG method.

In this paper, we novelly propose the notion of the Leet
pattern, which is a sequence of characters that contains Leet
letters. Though seemingly confused at first glance, they con-
struct an innovative pattern that has the same meaning as the
word it initially is.

A typical example is pa$$w0rd, which will be abbreviated
to a complicated base structure L2 S2 L1 D1 L2 in PCFG. How-
ever, in Leet pattern, pa$$w0rd will be spotted as a whole
pattern. Such patterns are often combined with other compo-
nents to create the password, for example, pa$$w0rd1517.
Because both “$” and “0” are Leet words, and “password”
is in NormDic, pa$$w0rd can be identified. Table II shows
some examples of Leet patterns in passwords.

Specifically, we try to find exact occurrences of the Leet
patterns in the passwords. A match is considered found if
and only if the following conditions are satisfied: a sequence
including Leet(s) is in the password, and after replacing the
Leet(s) with proper normal letters, the sequence can be spotted
in NormDic. In password study, some researchers choose not
to match dictionary words whose length is less than 4 to
ensure accuracy [34]. Nevertheless, this method is likely to
result in underfitting, especially in our context. Barely ignore
short grams is not a proper choice for the following reasons.
First, Chinese Pinyins, as well as English words, have a
large quantity of 2-grams and 3-grams. Unfortunately, people
are known to use words from their first language in their
passwords [10]. Second, 3-grams account for a particular
part in our dictionary NormDic (3-grams occupies 4.84%,
and the remaining length, 93.97%). Third, studies also show
that people tend to use the shorter or abbreviated word in

TABLE II

SOME SAMPLE PASSWORDS CONTAIN LEET AND PATTERN IN THEM

TABLE III

INSTANCES OF PCFG PASSWORD STRUCTURES

passwords [8], [38]. In order to test the influence of including
3-grams while detecting Leet patterns, we later compare the
number of Leets we could detect and the accuracy of detection
under both conditions.

C. Detecting and Matching Leet

In this section, we describe our methodologies to deal with
Leets in the training data, including data cleaning and the
distinguishing of Leets. To properly measure the degree of
regular dictionary words’ involvement in an individual pass-
word, we introduce Coverage, a metric to quantify the extent
of NormDic word occupies in a given password. We also
propose a matching method to find possible Leet patterns and
single Leet replacements in a user password.

The task of matching Leet patterns could be addressed by
using a dictionary. However, to the best of our knowledge,
no existing dictionary has differentiated single Leetspeak char-
acters by their probability of occurrence, nor did Leet patterns.
As an alternative, we chose to solve the problem through
modifications of the probabilistic context-free guesses. In other
words, extra Leet matching and replacing are integrated into
the initial training and cracking phase additionally.

1) Pre-Processing: Due to the tangled nature of passwords,
we conduct a pre-process before we start to match Leets in
each of the leaked password datasets. We first employ the
concepts presented in [57] to define the plain structure. Three
kinds of symbols are used to express the basic structure: an
alpha string(L) be a sequence of alphabet symbols, a digit
string(D) be a sequence of digits, and a special string(S) be a
sequence of non-alpha and non-digit symbols. Table III shows
different structures of PCFG.

In this paper, we define the plain structure as an all-digital
structure. In other words, a plain password is composed of
all digits, and in a normal length of a password (in this
paper, it should be longer than 3 and less than 40 in length).
For instance, 6569123 is a plain structure password, but
1password23, which can be denoted as D1 L8 D2, is not a plain

Authorized licensed use limited to: Tsinghua University. Downloaded on October 07,2021 at 15:23:53 UTC from IEEE Xplore. Restrictions apply.

2134 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

structure one. Passwords with the plain structure are excluded
in this work for efficiency issues. We also disregard those
without character in LeetDic because they do not fulfill the
precondition of Leet transformation.

2) Coverage: By comparing the Coverage value of the user
password containing Leet and its corresponding po, we could
determine whether a password replacement is a valid Leet
transformation. We use this measure in a similar way to [30],
where it is used to quantify the correlation between personal
information and user passwords.

Computing Coverage requires splitting password strings,
which is a challenging task. The difficulty lies in that the
splitting might have different results, and it is not easy to
determine which one is the best po. Our strategy is to match
words in NormDic as long as possible in order to avoid
triviality, because we want to find all of the possible longest
match words in the given password.

Mathematically, we denote li as the total length of the
matched word i after splitting, lP as the length of the current
sequence, and n is the number of matching words. Then let
the Coverage rate C be

C =
n∑

i=1

(
l2
i

l2
P

)
(1)

The value of Coverage ranges from 0 to 1. The
larger the Coverage is, the stronger a password is correlating
with the dictionary. Coverage “0” means no dictionary word is
detected in a password, and Coverage “1” indicates the entire
password is perfectly matched with one word in NormDic.
Algorithm 1 shows how to compute Coverage and find the
maximum cover list. We take the password, pwd, and the
shortest covering length, covLen, as input and make use of
a dynamic programming strategy.

The algorithm could be divided into three steps. First (i.e.
line 5 to line 11), we maintain a dynamic-sized window to find
all possible matches in pwd. The initial length of the window is
covLen, which will be 3 when we include 3-grams but 4 when
not. The result of this step can be different based on covLen.
All matched word’s start and terminal index is recorded as a
pair in curList, i.e. cur List[k][1] is the terminal index of the
k-th pair in curList.

If there exist matches, we conduct the second step (line
16 to line 19). In this step, we adopt a dynamic programming
approach to find the maximum cover segment set of the
password. It ends up with start and terminal indexes pair(s)
stored in coverIndex. Finally, we compute the Coverage of the
input password by Equation 1 at line 22.

To better illustrate how the entire process is conducted,
we use password “bluesky0” as an instance. It has a curList
of [(0, 3), (0, 4), (4, 6)], which indicates that there are three
possible words (“blue”, “blues”, “sky”) in it if we consider
3-gram. However, when we do not include 3-gram (covLen is
4), curList will be [(0, 3), (0, 4)]. In this case, if the covLen
equals to 3, DP will be [4, 4, 4, 4, 7, 7, 7] and we will get
an coverIndex of [(0, 3), (4, 6)].

3) Leet Detection: To a certain password, pwd , we first find
all the possible Leet letters in it referring to LeetDic. Then

Algorithm 1 findMaxCover(pwd, covLen)
Input:

The given password, pwd .
The shortest covering length of words, covLen.

Output:
The value of Coverage, Coverage;
The array of maximum cover segment set index of pwd ,
cover Index .

1: cur List ← NU L L
2: cover Index ← NU L L
3: Coverage← 0
4: pwd Len← len(pwd)
5: for m = 0 to pwd Len − covLen do
6: for n = m + covLen to pwd Len do
7: if pwd[m : n] in Norm Dic then
8: cur List .append([m, n])
9: end if

10: end for
11: end for
12: if cur List is not NU L L then
13: cur Len← len(cur List)
14: DP ← [0] ∗ cur Len
15: cur Di f f ← distance within each pair in cur List
16: for k = 1 to cur Len do
17: t ← cur List[k − 1][1] + DP[cur Di f f [k]]
18: DP[k] ← max(t, DP[k − 1])
19: end for
20: cover Index ← cur List pairs in DP
21: for all li such that li ∈ cover Index do
22: Coverage← Coverage+ len(li)

2/pwd Len2

23: end for
24: end if
25: return Coverage, cover Index

we try all permutations when replacing those detected Leet
characters with their wo (some characters can represent several
letters) in LeetDic, and take one replacement into account
if it increases the Coverage of pwd . For example, password
“13luesky0” has a coverage rate computed using Equation 1
as

C =
1∑

i=1

(
l2
i

l2
P

)
= 32

92 = 0.11.

whereas its valid po “bluesky0” has a coverage rate of

C =
2∑

i=1

(
l2
i

l2
P

)
= 42 + 32

82 = 0.339.

In this case, we draw the conclusion that “bluesky0” is a po

of “13bluesky0”.
We use Algorithm 1 to analyze all of the passwords in

the training set to detect all Leets getting used. Those who
ranked top 20% among all Leets in one dataset are considered
as the mostly used Leets which we call Top Leets. They are
used in the cracking session as input. The frequency of Leet
patterns follows a long-tailed distribution. A manually random

Authorized licensed use limited to: Tsinghua University. Downloaded on October 07,2021 at 15:23:53 UTC from IEEE Xplore. Restrictions apply.

LI AND ZENG: LEET USAGE AND ITS EFFECT ON PASSWORD SECURITY 2135

examination shows that patterns fall into the tail are less likely
to make sense. However, a rarely appeared pattern still costs
as equal to a high-frequency one in the matching process.
To balance accuracy and efficiency, we set a threshold of
frequency to determine whether to take one pattern into the
pattern dictionary. The threshold should lie in where the tail
of distribution starts roughly, which in this case is 20. The
results of the cracking experiment and user survey shown in
Section V confirm this choice.

D. Leet Attacks

We use PCFG cracker [4] as the base guess generator to
demonstrate the usage scenario of Leet transformation in the
sequence of attacking. According to the extensive experiments
conducted in [33], PCFG is among the most effective programs
in terms of the speed of generating correct guess, which makes
it suitable as a base method for illustrating Leet attacks. On
the other hand, although methods like neural networks could
automatically guess from scratch, their learned structures are
not interpretable, which will not benefit the distinguishing of
Leets. In addition to the formal guessing phase, we perform a
Leet matching phase in order to count the frequency of Leet
characters in the current training dataset.

1) PCFG Guess Generation: Weir et al. derive a probabilis-
tic context-free grammar from training set in PCFG method.
Based on various possibilities acquired at the training data,
the grammar later helps to generate guesses in the order of fre-
quency. When guessing, PCFG first produces the pre-terminal
structure by filling specific values in the D and S parts of the
base structure. The values are sorted in descending order of
frequency in advance. One base structure may have multiple
substitutions. Then, L part is fulfilled by the frequency of
attached dictionaries since the space of alpha strings is too
large to learn from the training set. As PCFG can produce
statistically high-probability passwords first, it only needs
to guess significantly fewer times than traditional dictionary
attacks. Those guesses are hashed to compare with values in
password databases. They act as the baseline to determine
whether a matching result is eligible or not in the following
steps.

2) Guessing With Leet Transformation: We feed the output
of PCFG cracker and Top Leets to this phase as input. Assume
we will attack T times, and the replacement rate isβ. Namely,
we choose the top β percent of guessing passwords, which
are more likely to appear in the real password set, as the
raw material to conduct Leet transforming. Then we use
the passwords after Leet replacement to substitute the same
number of guessing results with the overall lowest possibility
in PCFG, which is the last part of the T passwords.

We show how to generate guesses based on particular
password in Algorithm 2. The high-level idea is that we detect
possible Leet appearance in the password, then alter them to
generalize guesses.

Algorithm 2 uses T opLeet , covLen and a given password
pwd as input. pwd can be a guess result of other tools. To start
with, we examine whether Leet occupies a reasonable part of
the input password. If the ratio of total Leet length to password

Algorithm 2 Generate Possible Original passwords(po)
Input:

The set of Top Leets, T opLeets;
The shortest covering length of words, covLen.
The guess result, pwd .

Output:
A set of possible original passwords of pwd , P OS.

1: Leets ← f ind Leet (pwd)
2: P OS ← NU L L
3: if len(Leets)/ len(pwd) > α or Leets is NU L L then
4: return P OS
5: end if
6: i ← 1
7: I P L0 ← [pwd]
8: sep, Leet Index ← sepByLeet (pwd, T opLeets)
9: for all lt such that lt ∈ Leet Index do

10: I P Li ← I P Li−1
11: for all p such that p ∈ I P Li−1 do
12: q ← replace sep[lt] with its wo in p
13: I P Li .Append(q)
14: end for
15: i ← i + 1
16: end for
17: maxCov, max Per ← f ind MaxCover(pwd, covLen)
18: for all po such that po ∈ I P Li do
19: Covk, Perk ← f ind MaxCover(po, covLen)
20: if Perk ≥ max Per and Covk �= maxCov then
21: P OS.Add(po)
22: end if
23: end for
24: return P OS

length reaches drop-out ratio α, we skip this password. This
is to the consideration of accuracy, for the permutation of
different replacements of Leets in a sequence of pure Leets
can generate completely unexpected sequences. To illustrate,
after a sequence of transforming, the password “11132m” will
have “literm” as a po. However, such an explanation does not
seem to make sense for Leet characters occupied 83.33% of
its total length. In this study, α is set to 0.7 as an empirical
constant.

Then we try to create all combinations of distinct Leet
change by arranging every original word wo of Leet and
the remaining parts of this password (line 9 to line 16). We
use I P L to track the lists of possible wos. In sepByLeet ,
we cut Leets and normal characters in pwd into a list of
segments, sep. Leet Index stores the indexes of Leet segments
in sep. Each index in Leet Index corresponds to a version
of I P L, i.e. I P Li . We use function f ind MaxCover to get
the splitting result of pwd , and store it in maxCov and
max Per respectively, which represent the baseline cover index
list Cover Index and Coverage value. After that, we split
each po and select the result which produces the maximum
Coverage while has the relatively least splitting words. If there
are more than one available result, we count in all of them.
A password with larger Coverage is usually more vulnerable to

Authorized licensed use limited to: Tsinghua University. Downloaded on October 07,2021 at 15:23:53 UTC from IEEE Xplore. Restrictions apply.

2136 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

TABLE IV

THE PROPORTION OF PASSWORDS WHICH ONLY CONTAIN NUMBERS AND
THE PROPORTION OF UPPERCASE LETTERS IN ALL CHARACTERS

IN THE DATASETS

dictionary attacks, since it is prone to have a high-frequency
PCFG password structure. Considering users’ motivation of
using Leet, a po will only be accepted as a valid original
password when it has a Coverage at least equal to the user
password. At the same time, their cover index list should be
unequal. Every po meets this requirement will be added to
P OS.

IV. EXPERIMENT AND RESULTS

A. Datasets

Several previous password studies used leaked password
sets in the experiments since the number of passwords can
be large enough for statistical analysis. Similarly, we employ
four large-scale password sets that were leaked in recent years.
All of the data sources we used were publicly announced
at least once, and none had the veracity questioned by the
affected website. We only acquire the passwords without their
corresponding account information. Verifying the validity of
the data directly by attempting to use the credentials would
be unethical. Those password sets are described as follows.

CSDN(Chinese Software Developer Network) is a large
online forum like GeeksforGeeks in China. Its users are mainly
software developers, electronics engineers, and computer sci-
ence students. This password dataset leaked on an attack to
csdn.net in 2011. Gmail is a widely used email site, which
has a distributed source of users. RockYou is an online social
games company that developed widgets for MySpace. It was
cracked in 2009. T178 is an online game website that provides
several kinds of games, which has users such as office staff
and housemakers. Hence, by selecting leaked passwords from
websites of different functions and user communities, the sets
can be representative enough for our investigation on the usage
of Leets in passwords. Table IV shows the features about
the proportion of passwords that only contain numbers and
the percentage of uppercase letters in all characters from the
password sets. Note that although the Gmail dataset has no
upper case letter, it does not blur the results as we discussed
above. All of the four sets were randomly separated into two
even parts. One is used as training set, and the other is testing
set. The training and test set are mutually exclusive. Note that
the training set is exactly the set used in the former section.

• CSDN: 4,411,114 passwords, including 2,206,893 as
training set.

• Gmail: 4,929,068 passwords, including 2,456,952 as
training set.

• RockYou: 14,344,392 passwords, including 7,174,651 as
training set.

• T178: 9,072,966 passwords, including 4,537,419 as train-
ing set.

Upper case characters only occupy a minor fraction of all of
our datasets, and we have reasonably inferred this as a com-
mon phenomenon. Because of this, we lowercased all input
words in the training set before using them. Correspondingly,
all letters in LeetDic and NormDic are in lower case, too.
Note that PCFG does not distinguish upper case letters and
lower case ones likewise. Thus, lowering case to all training
set not only has a slight effect on the result but enhance
the efficiency of detecting Leets by deducing the comparison
times.

B. Empirical Study on Leet Usage in Passwords

After splitting passwords, replacing Leets in possible pat-
terns, and linking to our dictionary NormDic, we can get two
lists. One is of Leet patterns, denoted as L p = (pairi , pati),
where i = 1, 2, …, M, M is the number of characters happened
in matching Leet patterns. Here pairi is the ith pair of Leet
and its wo, pati is a list of patterns sorted by frequency of
appearance. The other is of Leet characters being used in the
current set, denoted as LC = (pairi , occi), in which occi

means the total possible occurrence times of the ith pair. Note
that occi is an estimated static to some extent because a Leet
can represent several different normal letters, while a normal
letter could be replaced by more than ten Leets sometimes. We
perform statistical analysis with and without including 3-grams
on all of our datasets, then describe the results as follows.

In Figure 3 we present different dataset’s proportion of
used Leet in LeetDic. We can see that although there are
227 characters in LeetDic, frequently used ones only account
for about 21% to 35%, depending on the dataset and the
number of grams we considered. Different portions of Leet
pattern with distinctive length represent in all Leet patterns are
shown in Figure 2. The percentage of usage times for Leet is
defined as the ratio of appearances of words in L P to the total
number of occurrences of English words and Chinese Pinyins
in the respective training set, which ranges from 1.2% (Gmail)
to 0.6% (T178). If a password segment matches a word in
the dictionary after Leet character in it is replaced with the
corresponding letter(s), we count it as a variant usage. Note
that one Leet can have more than one candidate leading to
match. On such a condition, we regard it as appearing once
instead of multiple times. In the meantime, being inspired by
[57], for the exact Leet character in one password segment,
each matching word in the dictionary is assigned the same
probability 1

N , in which N is the total number of words that
can be matched in NormDic after substitution of the Leet
character.

Next, we present some detected top Leets and Leet patterns
when including 3-grams in Table V, Table VI, and corre-
spondingly, top Leets and patterns when not including 3-grams
in Table VII, Table VIII. Some Leet transforms, such as “0”
to “o”, and Leet patterns like “zhang” to “shang”, are prone
to among the top Leets even under different condition. Thus,

Authorized licensed use limited to: Tsinghua University. Downloaded on October 07,2021 at 15:23:53 UTC from IEEE Xplore. Restrictions apply.

LI AND ZENG: LEET USAGE AND ITS EFFECT ON PASSWORD SECURITY 2137

Fig. 2. The percentage of Leet pattern used in different datasets. “including 3-grams” means including n-grams where n ≥ 3. “not including 3-grams” means
including n-grams where n > 3.

Fig. 3. All datasets’ Leet using proportion in LeetDic.

they may act as the most frequently used Leet transformations
in the majority of scenarios. Well-known transformations like
several kinds of “password” (“passw0rd”, “p@ssw0rd”) are
proved to be universally used. As a side note, we find that
when we do not include 3-grams, both the total number
of Leet and Leet pattern usage shows a decline. Likewise,
the majority part of the Leet patterns found is 3-grams. Thus,
to be comprehensive and thorough enough, we always factor
3-grams into the following study.

Interestingly, by using linear regression, we find that the
distribution of real-life Leet patterns in user passwords obeys
the Zipf’s law, which resides in natural languages and pass-
words [54]. For a password dataset D, the rank r of a Leet
pattern and its frequency f p follow the equation 2

f p = C

rs
(2)

where C and s are constants depending on the chosen dataset
and CovLen. In order to better observe Zipf’s law, we plot
the data on a log-log graph (base 10 in this work) in Figure 4,

TABLE V

TOP LEETS AND CORRESPONDING NORMAL WORD WHEN

INCLUDING 3-GRAMS

TABLE VI

TOP LEET PATTERNS AND CORRESPONDING NORMAL
WORD WHEN INCLUDING 3-GRAMS

in which the axes being log(rank order) and log(frequency).
Namely, log(fr) is linear with log(r):

log fr = logC − s · logr (3)

All of our datasets’ patterns have a high coefficient of
determination (i.e., For Gmail, R2 = 0.953; For RockYou,
R2 = 0.974; for CSDN, R2 = 0.968; and for T178, R2 =
0.972.), which indicates a remarkably sound fitting. Note that
the Gmail dataset falls behind slightly in the fitting. This
may due to bias of the raw dataset [21]: this dump may
also contain about 2.5% yandex.ru addresses. However, as the
Leet detection and cracking session does not rely on the

Authorized licensed use limited to: Tsinghua University. Downloaded on October 07,2021 at 15:23:53 UTC from IEEE Xplore. Restrictions apply.

2138 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 4. Zipf’s law in real-life Leet patterns in user passwords plotted on a log-log scale.

TABLE VII

TOP LEETS AND CORRESPONDING NORMAL WORD WHEN

NOT INCLUDING 3-GRAMS

TABLE VIII

TOP LEET PATTERNS AND CORRESPONDING NORMAL WORD

WHEN NOT INCLUDING 3-GRAMS

distribution, the result about Leet transformations in password
will not be affected.

C. Cracking Results

In Figure 5, we compare the performance of the original
PCFG and PCFG with Leet transforming (Leet-PCFG) using
the RockYou dataset as an example, for it is the largest dataset
in this paper. As mentioned before, we use half of the dataset
as the training set and the other half as the testing set.

To start with, we test the affection of β in the cracking
session. We adopt three values of β, 0.01, 0.05 and 0.1. Given
the different number of guesses, we compute the percentage
of those cracked passwords in the entire password trial set.
Figure 5(a) shows the hitting result of the primary PCFG and
its replacing outcome in an offline attack. The cracking rate
increases quickly because they always try high probability
guesses first. At first, there is little difference between the
two methods. The reason is that whatever replacement rate

is, the high possible passwords that can be enacted as trans-
forming material are not ample enough for Leet change to
create more match passwords in the testing set. As the cracking
session goes on, the possibility of generated guess tends to
decrease, which leads to the slower gradient exaltation of the
curve. Figure 5(d) shows that 5% of Leet replacement helps
to crack 0.55% more passwords in the test set after about
1 billion times of attacks. Cracking with the same parameters
leads to similar outcomes in other password sets. The accuracy
improvements are 0.75% in Gmail, 0.48% in T178, and 0.56%
in CSDN.

To investigate the attack performance of passwords gener-
ated by Leet transforming, we define hit percentage as the ratio
of the size of {po} to the number of training passwords. The hit
percentage varies with attack times under different replacing
rate β, and the results are shown in Figure 5(b) and 5(e). The
hit percentage increases as β becomes large. However, as β
increases, the replacing efficiency degrades. Therefore, we set
β to 0.05 in later experiments to make a trade-off between the
replacing efficiency and matching accuracy.

Here we notice two interesting facts. First, to achieve the
same attack success rate, the PCFG model without considering
leets requires more guesses. Thus, adding leets to existing
attack model seems to increase its strength.

Second, the Leet using percentage varies in every dataset,
which indicates that the user group’s password setting strategy
influences the overall characteristic of the website’s password
set. This is especially true for Leet patterns. A Leet pattern’s
using frequency could go up to the top list in one password set
but down into the tail in another set. For example, the pattern
“p@ssw0rd” in T178 training set only appeared 18 times, but
in the training set of CSDN, whose size is close to T178,
“p@ssw0rd” was counted 274 times, more than 15 times as
in T178.

D. Cross Attack

In previous experiments, we showed cracking results when
attacking one set with Leets extracted from the same password
set’s training set. Such a condition guarantees consistency of
password policies and user behaviors. However, this is true for
some cases that we might not have enough resources to enable
us to know about our target, or in lack of available sufficient

Authorized licensed use limited to: Tsinghua University. Downloaded on October 07,2021 at 15:23:53 UTC from IEEE Xplore. Restrictions apply.

LI AND ZENG: LEET USAGE AND ITS EFFECT ON PASSWORD SECURITY 2139

Fig. 5. Cracking results. (a) shows PCFG vs. single Leet-PCFG with different β. (d) enlarges the scale of the tale. (b) and (e) compare hit percentage of
transformed passwords in training set(β = 0.05) under different replacement strategies (by single letter or pattern). (c) and (f) exhibit the hit percentage of
transformed passwords in training set(β = 0.05), also under different strategies.

training passwords. Consequently, a general Leet dictionary
does good for all crack attempts.

To further establish the applicability of our findings, we syn-
thesize all selected top Leets of the datasets to generate a
general Leet dictionary. We multiply a Leet’s rank and the
size of the dataset it comes from to weight this Leet, then
merge Leets from four datasets all together. Those among the
top of the mixed Leet set are single out as part of the top
Leets for all. The Leet patterns for all are elected with the
same method. Later, we conduct a cross-crack test in RockYou
password set using four groups of top Leets, including those
from our real world dataset and the hybrid one (yet quite
realistic). Figure 5(c) and 5(f) show the cracking results. The
transforming times are the attempts (β · T) made by Leet-
PCFG, and here β = 0.05. Using the cracking result of
RockYou Leets as the baseline, we notice that cracking by
hybrid set shows the best result, although the improvement is
small. We also find that English- and Chinese-based password
datasets have distinctive effect on cross-cracking, especially
when the cracking depends on Leet patterns (In Figure 5(f),
set RockYou and set Gmail are more similar, while set T178
and set CSDN are close). Since users can be grouped into a
handful of behavioral clusters [42], the cause of this could be
the variety in users of Internet services providers. Nevertheless,
the hybrid of several datasets could rectify the shortcoming
and make the result more surgical. In other words, it enlarges
the total user sample pool. However, Leet patterns show less
portability. We suspect that this is because those patterns have
a more considerable correlation with particular user groups,
which are harder to transplant.

As mentioned before, the pattern transformation is always
included in the single Leet transformations, but it is more
applicable in exact datasets. The phase of Leet pattern match-
ing can derive more than 24,000 different patterns. Some Leet
patterns appear in extremely high frequency, but in general,
it has a long tail, as shown in Figure 4. However, in our
attacking phase, some patterns with relatively lower regularity
in the training set were found useful.

V. SURVEY

To properly evaluate the reliability of our algorithm in
detecting Leets and further explore whether using Leets is
acceptable for users, we design an online survey to collect
users’ reactions to those high-frequency Leet transformations.

A. Survey Design

We took various measures to improve the reliabilty of the
survey. To ease the concerns that may lead to untrue results
raised by [46], we randomized the sequence of questions and
conducted the survey online. To prohibit multiple submissions
from the same respondent, we set up a browser cookie
examiner. To ensure the anonymity of our participants, we use
a self-administered questionnaire.

We asked a series of questions listing passwords that con-
tain possible Leet transformation dissected from our datasets.
The sample passwords are randomly chosen from cracked
passwords of each training set according to proportion. Parts
of survey passwords includes high-frequency Leet patterns
as well as top Leets, whereas the other only contains Leet

Authorized licensed use limited to: Tsinghua University. Downloaded on October 07,2021 at 15:23:53 UTC from IEEE Xplore. Restrictions apply.

2140 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

TABLE IX

SOME HIGHLY APPROVED SAMPLE PASSWORDS. APPROVING A LEET
PASSWORD MEANS THE RESPONDENT THINK SUCH REPLACEMENT

IS REASONABLE AND READABLE, SO HE OR SHE CHOSE ”YES”
UNDER THIS QUESTION

characters but not highly detected pattern. One example of the
questions is “g00dluck” with a juxtaposed prompt, “[0, O]”,
to remark the pair of Leet and its wo. In this case, Leet pattern
is “g00d”. Participants are asked to judge whether they think
this password can be considered to contain a Leet or not in a
short time.

In order to keep the survey form within a bearable length,
we limit the number of questions to 60, covering 45 different
Leet patterns and 19 top Leets. Participants were asked to
answer from intuition but raptly to avoid fatigue. Typical
participants would take about five minutes to complete it.
We collected opinions from a cross-section of users, including
students and professional staff at several universities as well
as many other occupations. More than a half of participants
have experience in the field of computer science, some even
expert in web security. Thus, they are more likely to have
knowledge of Leets. We also include lay people in the sur-
vey for the sake of the composition balance of respondents.
Some lay people have never been exposed to any training of
using or distinguishing Leets, even the notion itself. Likewise,
they might not aware of Leets’ importance in passwords
as survey in [17] discovered. Thus, we start our survey by
compendiously introducing of Leet transformation to help all
participants understand the conception.

B. Responses and Summary

We received a total of 172 responses. On average, 65.28%
of chosen passwords are considered to involve Leets. This
portion is much higher than Figure 3 shows, which indicates
the effectiveness of our filtering strategy. Some passwords
as in Table IX are outstandingly and commonly approbated.
We noticed that the majority of top Leets and Leet patterns
agree with Table V and Table VI, which including 3-grams,
but not with Table VII or Table VIII, which not including
3-grams. We surmise the reason lies at overfitting in the
matching algorithm. Some subsequences or letters can be both
regarded as Leet(s) or simply as ordinary character(s). To those
who are not familiar with the usage and aim of Leets, such
transformation might be ambiguous and not a necessity.

We find that users are inclined to accept or recognize a Leet
when its shape is remarkably the same as the original letter in
some cases, like [0, O]. It complies with the common sense of
human nature. Besides, we notice that some Leet patterns with
a relatively lower appearance in training set enjoy a higher
acceptance rate. The phenomenon may due to the ambiguous

Fig. 6. Top voted Leets in the survey.

Fig. 7. Acceptance rate of patterns in the survey.

property of Leets. For example, both “shang” and “zhang”
are a meaningful sequence in Chinese Pinyin, and “S” can be
considered as a Leet of “Z”. Furthermore, such transformation
performs well in our experiments. All of the supported rates
of voted Leets are summarized in Figure 6. Some of them are
detected and matched many times in the dataset, but have low
acceptance, like [J, Y] and [12, R]. We speculate that parts of
the reason lie in the generality of participants.

We summarize the response of agreed Leet pattern in
Figure 7. In general, more than half of the participants would
accept a pattern if its overall occurrence in the original dataset
is more than about 20 times. Such an outcome also supports
our former assumption that adding patterns detected over
around 20 times into a crack dictionary is a better choice to
balance efficiency and accuracy. The relative consistency of
base appearance times could act as a standard for researchers
to determine a favorable selection strategy.

VI. DISCUSSION

A. Scalability

As the workflow in Figure 1 shows, the “Leet matching”
session and “guessing with Leet transformation” phase are
apart from PCFG guess and attack. In other words, only the

Authorized licensed use limited to: Tsinghua University. Downloaded on October 07,2021 at 15:23:53 UTC from IEEE Xplore. Restrictions apply.

LI AND ZENG: LEET USAGE AND ITS EFFECT ON PASSWORD SECURITY 2141

“PCFG guess generation” phase is about attacking methods.
The input and output of this phase are training password sets
and guess results, respectively, which conform to mainstream
methods like JtR [6] and neural networks. Likewise, the Leet
dictionary is independent of the base method. Those Leet
presentations and their using frequency could be combined
with many related methods.

The Leet approach is likely to provide improvements over
other algorithms ignoring Leets. For extensions of PCFG like
Personal-PCFG [30], using Leets could be helpful as its basic
strategy is still PCFG. For conceptually different algorithm
such as approaches based on Markov models, Leets could
also act as a supply. As although Markov model assigns
possibilities to adjacent letters, it does not take the context
of Leet into account.

B. Password Protection

We hope that our work brings benefits to researchers and
system administrators by improving the understanding of Leet
usage in passwords, including single Leets and Leet patterns,
which may lead to more applicable measures of strengthening
passwords.

Over the past fifteen years, numerous surveys and studies
suggest that password reusing behavior is more prevalent than
previously believed; users set the same or similar passwords
across different websites (e.g., [13], [17], [19], [42], [55]).
Also, studies like [53], [61] have found very low variation
in the patterns that users leverage to modify their passwords
when they modify their passwords at all. Considering the
prevalence of user’s transforming behavior, top Leets could
be helpful to adversaries when the base attack dictionary is
not comprehensive enough.

On the other hand, Leet pattern transformation is truly an
efficient and memorable strategy to protect user passwords.
According to Shay et al. [46], Wash et al. [56] and many
other researchers, users tend to modify old and the most
complicated passwords to create new ones. Even when they
were forced to change, many users avoid creating completely
new passwords. Using dictionary words and names with spe-
cial characters attached to the beginning or end is still the
most common strategies to create passwords. Consequently,
the simple attempt to embrace some transform tricks could
strengthen users’ passwords by equipping little known Leets
in single or pattern form.

C. Limitations

Leet has long been a quite instinctive choice even more
than passwords. It is knotty to decide whether the user is
using a Leet transformation or a word that coincidentally
contains the letter sequence, especially for short patterns and
niche expressions. For example, a fan of the band Green
Day would claim that “tre3cool” (a member of the band)
should not be interpreted as “treecool” or “tree” “cool”, which
makes perfect sense to those who do not know musician Tré
Cool at all. In our survey, the ignorance of percentage of
age, gender, language, and vocation distribution may lead to
underestimating the problem. For example, as we mentioned

before, “zhang” and “shang” are both meaningful to Chinese
speakers, but not to users from other countries.

Moreover, we only considered the transformation of con-
verting alpha to digits or special characters in our study. There
might be some cases that users want to utilize other sorts of
transformation, like from digits to letters. Nevertheless, as we
conclude from our survey responses, such a pair of passwords
could be somewhat paradoxical. As both of them can be seen
as the password users initially want to use, it is of great
difficulty to assert those kinds of transformation.

D. Ethical Considerations

Utilizing datasets leaked from data breaches has been a
mainstream method on password studies. However, we fully
realize that studying leaked passwords brings in ethical con-
cerns. Each dataset in our study is stored and used with great
attention. All data are only used for researching purpose.
We will not expose any password or use this information in
any way other than for research use.

For our user study, we took careful steps to address privacy
issues regarding collecting and analyzing the data. Our ques-
tionnaire is anonymous, and respondents don’t have to provide
any information about themselves.

VII. CONCLUSION AND FUTURE WORK

In this work, we conduct a comprehensive quantitative
study on how Leet transformation resides in human-chosen
passwords.

To the best of our knowledge, this is the first work to define
and analyze the special transforming phenomenon in pass-
words systematically. We develop a Leet detecting method, and
show its validity by cracking experiments and user surveys.
Though the entire Leet transformation vocabulary is extensive,
only around 30% of them are detected in real password sets.
Leveraging two forms of Leets in password attacks performs
similar accuracy, but using Leet patterns requires more attempt
times. Our experiments prove that single Leet dictionaries
extracted from different datasets could be synthesized to a
more robust and easy-to-use universal dictionary, whereas
Leet patterns are more case-based but offer higher efficiency.
The recognizability of most of the detected Leet patterns
and high-frequency Leet letters is proved by our user survey.
In addition, this paper contributes one of the currently most
comprehensive corpora of human-chosen Leet transformation
dictionary, which improves on regular cracking models as a
bonus. Leet transformation could also be accepted as a wel-
come and mnemonic method to enhance password strength, for
it is simple and straightforward. The conclusion drawn from
the research provides new perspectives for password analysis.
According to the results of the paper, users always hold diverse
attitudes towards Leets in passwords since subjective factors
can be diversified.

Future work could be focused on to what extent people
incorporating special transformation in passwords influences
the password strength meters. The question whether digits and
special characters could be transformed by users still remains.
If so, their effect in password cracking, strength measurement,

Authorized licensed use limited to: Tsinghua University. Downloaded on October 07,2021 at 15:23:53 UTC from IEEE Xplore. Restrictions apply.

2142 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

and password reusing are also interesting topics to be explored
in future work.

REFERENCES

[1] Hashcat Advanced Password Recovery. Accessed: Mar. 5, 2019.
[Online]. Available: https://hashcat.net/hashcat/

[2] Leetspeak. Accessed: Jan. 10, 2019. [Online]. Available: https://en.
wikipedia.org/wiki/Leet

[3] Leet vocabulary. Accessed: Jan. 10, 2019. [Online]. Available: https://
zh.wikipedia.org/wiki/Leet

[4] PCFG Cracker. Accessed: Feb. 8, 2019. [Online]. Available:
https://github.com/lakiw/pcfg_cracker

[5] (2007). British National Corpus. [Online]. Available: http://www.
natcorp.ox.ac.uk/

[6] (2013). John the Ripper Password Cracker. [Online]. Available: https://
www.openwall.com/john/

[7] A. Adams and M. A. Sasse, “Users are not the enemy,” Commun. ACM,
vol. 42, no. 12, pp. 41–46, 1999.

[8] H. Aoyama and J. Constable, “Word length frequency and distribution
in English: Part I. Prose,” Literary Linguistic Comput., vol. 14, no. 3,
pp. 339–358, Sep. 1999.

[9] J. Blocki, B. Harsha, and S. Zhou, “On the economics of offline pass-
word cracking,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2018,
pp. 853–871.

[10] J. Bonneau, “The science of guessing: Analyzing an anonymized cor-
pus of 70 million passwords,” in Proc. IEEE Symp. Secur. Privacy,
May 2012, pp. 538–552.

[11] J. Bonneau, S. Preibusch, and R. Anderson, “A birthday present every
eleven wallets? The security of customer-chosen banking pins,” in Proc.
Int. Conf. Financial Cryptogr. Data Secur. Berlin, Germany: Springer,
2012, pp. 25–40.

[12] S. Boztas, “Entropies, guessing, and cryptography,” Dept. Math., Roy.
Melbourne Inst. Technol., Tech. Rep. 6, vol. 6, 1999, pp. 2–3.

[13] A. S. Brown, E. Bracken, S. Zoccoli, and K. Douglas, “Generating
and remembering passwords,” Appl. Cognit. Psychol., vol. 18, no. 6,
pp. 641–651, Sep. 2004.

[14] C. Cachin, “Entropy measures and unconditional security in cryptogra-
phy,” Ph.D. dissertation, ETH Zürich, Zürich, Switzerland, 1997.

[15] X. D. C. D. Carnavalet and M. Mannan, “A large-scale evaluation of
high-impact password strength meters,” ACM Trans. Inf. Syst. Secur.,
vol. 18, no. 1, pp. 1–32, Jun. 2015.

[16] C. Castelluccia, A. Chaabane, M. Dürmuth, and D. Perito,
“When privacy meets security: Leveraging personal information
for password cracking,” 2013, arXiv:1304.6584. [Online]. Available:
http://arxiv.org/abs/1304.6584

[17] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The tangled
Web of password reuse,” in Proc. 21st Annu. Netw. Distrib. Syst. Secur.
Symp. (NDSS), 2014, pp. 23–26.

[18] X. De. C. D. Carnavalet and M. Mannan, “From very weak to very
strong: Analyzing password-strength meters,” in Proc. 21st Annu. Netw.
Distrib. Syst. Secur. Symp. (NDSS), 2014, pp. 1–19.

[19] D. Florencio and C. Herley, “A large-scale study of Web password
habits,” in Proc. 16th Int. Conf. World Wide Web (WWW), 2007,
pp. 657–666.

[20] S. Gaw and E. W. Felten, “Password management strategies for online
accounts,” in Proc. 2nd Symp. Usable Privacy Secur. (SOUPS), 2006,
pp. 44–55.

[21] M. Golla, B. Beuscher, and M. Dürmuth, “On the security of cracking-
resistant password vaults,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., Oct. 2016, pp. 1230–1241.

[22] M. Golla and M. Dürmuth, “On the accuracy of password strength
meters,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2018, pp. 1567–1582.

[23] W. Han, Z. Li, L. Yuan, and W. Xu, “Regional patterns and vulnera-
bility analysis of Chinese Web passwords,” IEEE Trans. Inf. Forensics
Security, vol. 11, no. 2, pp. 258–272, Feb. 2016.

[24] A. Hanamsagar, S. S. Woo, C. Kanich, and J. Mirkovic, “Leveraging
semantic transformation to investigate password habits and their causes,”
in Proc. CHI Conf. Hum. Factors Comput. Syst., Apr. 2018, p. 570.

[25] B. Hitaj, P. Gasti, G. Ateniese, and F. Perez-Cruz, “PassGAN: A deep
learning approach for password guessing,” in Proc. Int. Conf. Appl.
Cryptogr. Netw. Secur. Berlin, Germany: Springer, 2019, pp. 217–237.

[26] S. Houshmand, S. Aggarwal, and R. Flood, “Next gen PCFG pass-
word cracking,” IEEE Trans. Inf. Forensics Security, vol. 10, no. 8,
pp. 1776–1791, Aug. 2015.

[27] P. G. Kelley et al., “Guess again (and again and again): Measuring
password strength by simulating password-cracking algorithms,” in Proc.
IEEE Symp. Secur. Privacy, May 2012, pp. 523–537.

[28] J. Kiesel, B. Stein, and S. Lucks, “A large-scale analysis of the
mnemonic password advice,” in Proc. 24th Annu. Netw. Distrib. Syst.
Secur. Symp. (NDSS), 2017, pp. 1–13.

[29] S. Komanduri et al., “Of passwords and people: Measuring the effect
of password-composition policies,” in Proc. Annu. Conf. Hum. Factors
Comput. Syst. (CHI), 2011, pp. 2595–2604.

[30] Y. Li, H. Wang, and K. Sun, “A study of personal information in
human-chosen passwords and its security implications,” in Proc. IEEE
INFOCOM-35th Annu. IEEE Int. Conf. Comput. Commun., Apr. 2016,
pp. 1–9.

[31] Z. Li, W. Han, and W. Xu, “A large-scale empirical analysis of Chinese
Web passwords,” in Proc. 23rd USENIX Secur. Symp. (USENIX Secur.),
2014, pp. 559–574.

[32] Y. Liu et al., “GENPass: A general deep learning model for password
guessing with PCFG rules and adversarial generation,” in Proc. IEEE
Int. Conf. Commun. (ICC), May 2018, pp. 1–6.

[33] T. Lundberg, “Comparison of automated password guessing strategies,”
M.S. thesis, Linköping Univ., Linköping, Sweden, 2019.

[34] J. Ma, W. Yang, M. Luo, and N. Li, “A study of probabilistic password
models,” in Proc. IEEE Symp. Secur. Privacy, May 2014, pp. 689–704.

[35] D. Malone and K. Maher, “Investigating the distribution of password
choices,” in Proc. 21st Int. Conf. World Wide Web (WWW), 2012,
pp. 301–310.

[36] M. L. Mazurek et al., “Measuring password guessability for an entire
university,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.
(CCS), 2013, pp. 173–186.

[37] W. Melicher et al., “Fast, lean, and accurate: Modeling password
guessability using neural networks,” in Proc. 25th USENIX Secur. Symp.
(USENIX Secur.), 2016, pp. 175–191.

[38] G. A. Miller, E. B. Newman, and E. A. Friedman, “Length-frequency
statistics for written English,” Inf. Control, vol. 1, no. 4, pp. 370–389,
Dec. 1958.

[39] R. Morris and K. Thompson, “Password security: A case history,”
Commun. ACM, vol. 22, no. 11, pp. 594–597, Nov. 1979.

[40] A. Narayanan and V. Shmatikov, “Fast dictionary attacks on passwords
using time-space tradeoff,” in Proc. 12th ACM Conf. Comput. Commun.
Secur. (CCS), 2005, pp. 364–372.

[41] P. Oechslin, “Making a faster cryptanalytic time-memory trade-off,”
in Proc. Annu. Int. Cryptol. Conf. Berlin, Germany: Springer, 2003,
pp. 617–630.

[42] S. Pearman et al., “Let’s go in for a closer look: Observing passwords in
their natural habitat,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur. New York, NY, USA: ACM, Oct. 2017, pp. 295–310.

[43] J. O. Pliam, “On the incomparability of entropy and marginal guesswork
in brute-force attacks,” in Proc. Int. Conf. Cryptol. India. Berlin,
Germany: Springer, 2000, pp. 67–79.

[44] D. Schweitzer, J. Boleng, C. Hughes, and L. Murphy, “Visualizing
keyboard pattern passwords,” Inf. Visualizat., vol. 10, no. 2, pp. 127–133,
Apr. 2011.

[45] R. Shay et al., “Designing password policies for strength and usability,”
ACM Trans. Inf. Syst. Secur., vol. 18, no. 4, pp. 13-1–13-34, 2016.

[46] R. Shay et al., “Encountering stronger password requirements: User
attitudes and behaviors,” in Proc. 6th Symp. Usable Privacy Secur.
(SOUPS), 2010, pp. 1–20.

[47] B. Ur, “Supporting password-security decisions with data,” Ph.D. dis-
sertation, Carnegie Mellon Univ., Pittsburgh, PA, USA, 2018.

[48] B. Ur, J. Bees, S. M. Segreti, L. Bauer, N. Christin, and L. F. Cranor,
“Do users’ perceptions of password security match reality?” in Proc.
CHI Conf. Hum. Factors Comput. Syst., May 2016, pp. 3748–3760.

[49] B. Ur et al., “‘I Added’!’At the end to make it secure’: Observing
password creation in the lab,” in Proc. 11th Symp. Usable Privacy Secur.
(SOUP), 2015, pp. 123–140.

[50] B. Ur et al., “Measuring real-world accuracies and biases in modeling
password guessability,” in Proc. 24th USENIX Secur. Symp. (USENIX
Secur.), 2015, pp. 463–481.

[51] R. Veras, C. Collins, and J. Thorpe, “On semantic patterns of passwords
and their security impact,” in Proc. 21st Annu. Netw. Distrib. Syst. Secur.
Symp. (NDSS), 2014, pp. 1–16.

[52] C. Wang, S. T. K. Jan, H. Hu, D. Bossart, and G. Wang, “The next
domino to fall: Empirical analysis of user passwords across online
services,” in Proc. 8th ACM Conf. Data Appl. Secur. Privacy, Mar. 2018,
pp. 196–203.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 07,2021 at 15:23:53 UTC from IEEE Xplore. Restrictions apply.

LI AND ZENG: LEET USAGE AND ITS EFFECT ON PASSWORD SECURITY 2143

[53] C. Wang, S. T. K. Jan, H. Hu, and G. Wang, “Empirical analy-
sis of password reuse and modification across online service,” 2017,
arXiv:1706.01939. [Online]. Available: http://arxiv.org/abs/1706.01939

[54] D. Wang, H. Cheng, P. Wang, X. Huang, and G. Jian, “Zipf’s law
in passwords,” IEEE Trans. Inf. Forensics Security, vol. 12, no. 11,
pp. 2776–2791, Nov. 2017.

[55] K. C. Wang and M. K. Reiter, “How to end password reuse on
the Web,” 2018, arXiv:1805.00566. [Online]. Available: http://arxiv.
org/abs/1805.00566

[56] R. Wash, E. Rader, R. Berman, and Z. Wellmer, “Understanding
password choices: How frequently entered passwords are re-used across
websites,” in Proc. 12th Symp. Usable Privacy Secur. (SOUP), 2016,
pp. 175–188.

[57] M. Weir, S. Aggarwal, B. D. Medeiros, and B. Glodek, “Password
cracking using probabilistic context-free grammars,” in Proc. 30th IEEE
Symp. Secur. Privacy, May 2009, pp. 391–405.

[58] R. Yampolskiy, “Analyzing user password selection behavior for reduc-
tion of password space,” in Proc. 40th Annu. Int. Carnahan Conf. Secur.
Technol., Oct. 2006, pp. 109–115.

[59] S. Yang, S. Ji, and R. Beyah, “DPPG: A dynamic password policy
generation system,” IEEE Trans. Inf. Forensics Security, vol. 13, no. 3,
pp. 545–558, Mar. 2018.

[60] J. Zeng, J. Duan, and C. Wu, “Empirical study on lexical senti-
ment in passwords from Chinese websites,” Comput. Secur., vol. 80,
pp. 200–210, Jan. 2019.

[61] Y. Zhang, F. Monrose, and M. K. Reiter, “The security of modern
password expiration: An algorithmic framework and empirical analysis,”
in Proc. 17th ACM Conf. Comput. Commun. Secur. (CCS), 2010,
pp. 176–186.

Wanda Li received the B.S. degree (Hons.) from the
School of Computer Science, Fudan University. She
is currently a graduate student of data science and
information technology with the Tsinghua-Berkeley
Shenzhen Institute (TBSI). Her research interests
include data mining, machine learning, and user
behavior analysis.

Jianping Zeng received the Ph.D. degree from
Xiamen University in 2006. He is currently an
Associate Professor with the School of Computer
Science, Fudan University. He has published over
70 research papers in refereed journals and confer-
ences in the areas of network security and artificial
intelligence, and has authored two books. He holds
seven patents. His research interests include big data
security, AI security, and machine learning for social
media analysis.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 07,2021 at 15:23:53 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

