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Abstract—Outstanding users (OUs) denote the influential, “core” or “bridge” users in online social networks. How to accurately detect
and rank them is an important problem for third-party online service providers and researchers. Conventional efforts, ranging from early
graph-based algorithms to recent machine learning-based approaches, typically rely on an entire social network’s information.
However, for privacy-conscious users or newly-registered users, such information is not easily accessible. To address this issue, we
present DeepPick, a novel framework that considers both the generalization and specialization in the detection task of OUs. For
generalization, we introduce deep neural networks to capture dynamic features of the users. For specialization, we leverage the
traditional descriptive features to make use of public information about users. Extensive experiments based on real-world datasets
demonstrate that our approach achieves a high efficacy of detection performance against the state-of-the-art.
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1 INTRODUCTION

THE rapid growth of online social networks (OSNs)
brings a surge in user-generated contents (UGC). On

one hand, the massive base of UGC is of great help for peo-
ple to make decisions about their daily lives. On the other
hand, however, it also troubles people when they are trying
to decide what to read, especially in popular platforms like
Yelp [1], [2], [3] and Foursquare [4], [5], [6]. Generally, a
user tends to be influenced by the outstanding users (OUs) in
the network, since they always play a critical role in online
communities [7], [8]. Based on the popular independent
cascade (IC) model [9], OUs may have better capabilities of
information dissemination. Representative examples of OUs
are structural hole spanners [10], [11], influential users (e.g.,
high degree centrality or ego-betweenness centrality [12]),
and elite users in the network.

OUs have long been shown to be one of the fundamental
building blocks of many business problems and social ap-
plications, e.g., recommender systems [13], [14], viral mar-
keting [15], and information diffusion [16], [17]. Thus, there
are various methods of OU detection in recent literature
[18], [19], [20], [13], [21]. However, existing methods suffer
from one or more of the three following drawbacks: 1) The
network structure sometimes is fragmentary due to users’

• Wanda Li, Zhiwei Xu, Yi Sun, Qingyuan Gong, Yang Chen and Xin
Wang are with the School of Computer Science, Fudan University, China,
and the Shanghai Key Lab of Intelligent Information Processing, Fudan
University, China, and Peng Cheng Laboratory, China.

• Aaron Yi Ding is with the Department of Engineering Systems and
Services, Delft University of Technology, Netherlands.

• Pan Hui is with the Department of Computer Science, University of
Helsinki, Finland and the Department of Computer Science and Engi-
neering, Hong Kong University of Science and Technology, Hong Kong.

privacy configurations. A user may choose to hide her friend
list or follow someone privately. Thus, obtaining the entire
social graph is very difficult, if not impossible, for third-
party service providers or researchers. 2) The UGC and
other types of user features are usually abundant in real-
world scenarios and can provide idiographic information to
depict a user. Ignoring these features can cause inaccuracy
in the task of distinguishing particular types of OUs. 3)
Modern OSNs usually contain millions of users or even
more, and general deep learning solutions may introduce
complexity to the identification process.

To resolve these issues, we design and implement Deep-
Pick, a novel framework that detects OUs without referring
to the social connectivity information of the entire network.
DeepPick only adopts the publicly-visible information to
extract users’ social graph-related characteristics. Such in-
formation could be the reviews, visited Points of Interests
(POIs), and profiles. The features DeepPick leverages in-
clude five types: sentiment, temporal, linguistic, spatial, and
demographic. Sentiment features indicate the inner charac-
teristics of a user’s attitude. To get those implicit features,
we propose the TextCNN Long-Short Term Memory (TC-
LSTM) structure, which uses the user’s reviews to detect
OUs. Apart from the sentiment view, reviews could provide
recognizable features from other particular perspectives,
i.e., temporal and linguistic. We extract those features by
analyzing the users’ reviews. Spatial features are the users’
visited POIs’ attributes, revealing users’ social status by
their visited real-world POIs. Demographic features are con-
ventional material for user analysis and have been shown
helpful. Most times, they can be obtained from a user’s
profile. In short, we have made three key contributions:

• We formulate the concept of OUs to represent the
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nodes with high diffusion capability in the informa-
tion cascade (IC) model, then design and implement
a framework, DeepPick, to distinguish those OUs with
the information of just a few users for training.

• We propose a mixed feature selection strategy of com-
bining deep neural networks and traditional feature
selection methods, which can be conveniently applied
in detecting OUs in OSNs.

• Our framework can validate whether a user is out-
standing by public attainable information instead of the
whole network’s structure. Exhaustive evaluations of
the performance based on real-world datasets demon-
strate the advantage of our approach against the state-
of-the-art.

The rest of this paper is organized as follows. Section
2 defines the OUs, presents the dataset, and shows the
location-related metrics. In Section 3, we expound on the
idea of DeepPick, the OU detection framework. Section 4
describes the architecture of the sentiment features extractor,
TC-LSTM, which is the review processing module of our
framework. Section 5 provides a thorough explanation of
implementing details and evaluation of DeepPick. Section 6
outlines previous studies related to our work. Section 7 dis-
cusses more about model designs, the time complexity, and
OUs’ relationship with “active users”. In the last section, we
summarize our work and give some future directions.

2 BACKGROUND AND DATASET

In this section, we illustrate the background of our study.
We first formally define the outstanding users (Section 2.1)
and then overview the two datasets we used in this work
(Section 2.2). After that, we introduce how to depict the role
of locations in OU detection (Section 2.3).

2.1 Definition of Outstanding Users

As Gladwell states in “The Tipping Point” [22], outstanding
users are the 20% participants who occupy 80% of social
capital. Although there are diverse styles of argument [23],
[24], [25] of social capital, in short, it is the metaphor about
social advantages, i.e., the advantages include information,
influential power, and trust. Several studies have validated
that a set of users are especially related to positive indicators
of social capital, including social impact [26] and informa-
tion diffusion [27], [28]. According to [29], social benefits
can be attained by occupying some unique positions in the
network. In this paper, we refer to this group of important
users as outstanding users.

We define the outstanding users based on one of the
most widely used models of information diffusion, the inde-
pendent cascade (IC) model [9], [30], [31]. In the IC model,
an activated node a in set Ai will activate its neighbors W
with a probability of diffusion pa,W defined by their social
connections. This procedure is iterated in discrete steps (i.e.,
i = 0, 1, . . . ). The initial set,A0, represents the first activated
node-set responsible for starting the information diffusion
process. High information diffusion speed preferred by the
marketing services can be reached by choosing nodes with
higher social impact as A0. Following this, we formally
define outstanding users as:

Definition 1. Outstanding Users. Given a social network
G = (V,E), where V is the set of all users, E ⊆ V × V
is the set of all social connections between users, out-
standing users (OUs) are a group of users who have
higher diffusion capability than others. OUs can widen
and speed up information dissemination if they are
considered as the first activated node set A0 of the IC
model.

These nodes can be selected by the criteria of informa-
tion dissemination capabilities, including the spread speed
within or between communities or specific nodes’ informa-
tion influence. Typical examples of OUs are structural hole
spanners, influential users, and elite users. They are defined
as follows:

Definition 2. Structural Hole Spanners. The structural hole
theory [29], [11] shows that people will benefit from
acting as the “bridge” of different people or communities
that are otherwise disconnected. Known as structural
hole spanners (SHS), those people become non-trivial
because they have more control over the information
transmitted among communities [32], [33], [11].

SHS is a good choice for A0 as they are the bridges
of information flow between communities. They can be
selected by four ego network-based metrics, i.e., effective
size, efficiency, constraint, and hierarchy [10].

Another example of structure-based OUs is the influen-
tial users:

Definition 3. Influential users. Influential users are a group
of users with the highest influence on others. The users’
influence in a network can be measured by the user
centrality values [34].

Centrality metrics include degree centrality, closeness
centrality, and betweenness centrality. They can measure the
importance of individuals [35], [36], [13]. Selecting the influ-
ential users as A0 will maximize the information diffusion
speed inside a community.

As literature [37] shows, the above-mentioned
widespread norms are correlated with cascades’ properties.
Most existing discovery methods of OUs rely on social
connectivity information of the entire social network [38],
[39], [21], but getting such information could be challenging
due to users’ privacy configurations. To deal with possible
data famine, we use a subset of nodes’ ego network
structures to draw statistically significant conclusions about
the whole population. Those metrics of ego network are
shown useful in works like [12], [10], [40], [41].

Despite the structure-based methods, a user can be iden-
tified as an OU based on other standards. A representative
example of this type of OUs is the elite users.

Definition 4. Elite users. Elite users are selected by OSNs.
The standard of elite users varies from one platform to
another. For example, on Yelp, users who have well-
written reviews, high-quality photos, a detailed personal
profile, and a history of playing well with others are
more likely to be recognized as elite users.

Using elite users as A0 emphasizes the role of UGC in
spreading information.
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These specific types of OUs show characteristics related,
but not limited to, network structure information, demo-
graphic features, and temporal patterns. In the following
sections, we explore OUs’ characteristics in these aspects
and leverage them to design a model for OU detection.

2.2 Dataset Description
We employ the data of Yelp as our primary dataset to
discover OUs and include data from Foursquare to ensure
our results are generalizable. Both of them have attracted
tens of millions of users all around the world, and are
widely referred to in related studies of OSNs [42], [3], [6],
[4], [5].

The Yelp dataset1 is publicly available and spans from
October 2004 to November 2018 in ten cities of North Amer-
ica. It comprises 1.6 million users, with their 1.9 million re-
views and tips of 192 thousand businesses. The Foursquare
dataset is a subset of data in [42], spans from October 2008
to February 2016 with spots all around the world. It has
2.9 million users and 630 thousand tips from 210 thousand
venues.

The data entries of users vary from one platform to
another. There will be demographic information like ID,
name, review account, friend list. In some cases, the plat-
form also has the average number of the rated stars and
other comprehensive assessments of the reviews and tips2,
which are a great resource for extracting the location visit
histories of users as described in [3]. On the other hand, the
related locations also provide social information of users. In
both datasets, locations are the real-world POIs, to which
people could post check-ins and write reviews. Their IDs,
locations, categories, attributes, stars, and review details are
accessible to the public.

We select several types of OUs as examples in this work:
• Structural Hole Spanners: We rank them by effective

size (in descending order), constraint (in ascending or-
der), and hierarchy (in ascending order) separately [10],
and label the top-K users as structural hole spanners.
They are denoted as SHS (E), SHS (C), SHS (H).

• Influential Users: We employ degree centrality (noted
as Degree later) [43] and ego betweenness centrality
(noted as Ego-Betw later) [40] as two independent
measurements.

• Elite Users: We use the users in “Elite Squad” of Yelp as
the labeled elite users in the Yelp dataset.

Each group comprises 10,000 users, with an equal num-
ber of OUs and their counterparts (noted as normal users).
For each user type, we randomly choose the normal ones
from the non-OUs. All the users are from the largest con-
nected component of the social graph.

2.3 Measuring the Role of Locations
Both Yelp and Foursquare are location-based social net-
works (LBSNs), where geo-social networks provide an infor-
mative view to distinguish between OUs and normal users.
Taking the reviewed POIs (named locations in this work)
of users into account could lead to higher accuracy when

1. https://www.yelp.com/dataset, obtained in July 2019
2. hereinafter called “reviews”.

detecting OUs. Here we first set up the geo-social network
model, then describe measures of the social diversity asso-
ciated with a location through its social network of visitors.

2.3.1 Interconnected Geo-Social Network
The model of an interconnected geo-social network carries
rich information about both users and locations. Locations
have the property of connecting people, and their visitors
may share similar attributes [44]. An individual’s social
neighborhood, Nh(b), denotes its social network links to
a location b at distance h. The 1-hop social neighborhood
of location b would be composed of b’s direct visitors; the
2-hop social neighborhood would include all individuals in
the 1-hop neighborhood and their friends. In this work, we
count in second-hand redundancy brought with friendships
of visitors to a location, so we set hop h to 2.

2.3.2 Homogeneity
The homogeneity of a place expresses to what extent its
visitors are homogeneous in location preferences. A user is
more likely to be outstanding in her online community if the
locations she reviewed have a wider range of homogeneity
scores. Following the definition in [44], we measure the
overall social homogeneity of a location by the mean cosine
distance of every pair of its visitors’ place preference vectors
as

H(b) =

∑
u,v∈Nh(b)

U·V
‖U‖‖V‖

|Nh(b)|(|Nh(b)| − 1)
(1)

where |Nh(b)| is the size of the network, and U, V is the
preference vectors of two users u and v, separately. One’s
preference vector represents the percentage of each category
of locations she had visited. The length of the preference
vector is equal to the number of location categories. The
homogeneity value ranges from 0 to 1, proportional to the
homogeneous level of the categories reviewed by pairs of
location visitors.

2.3.3 Entropy
The entropy of a place describes its diversity of visits. By far,
it is the most common notion for quantifying a location’s
popularity [45]. As OUs tend to visit popular places [46],
it helps in the detection process. Entropy is defined by
Shannon entropy value:

E(b) = −
∑

u∈Nh(b)

|r(u, b)|
|r(b)|

log
|r(u, b)|
|r(b)|

(2)

where |r(u, b)| is the user u’s number of reviews at location
b and |r(b)| is the total number of reviews of location b.
Entropy has been exploited in mobility studies to describe a
location’s popularity and its visitors’ geographical diversity
level [45], [47], [48]. More specifically, locations that are re-
viewed by highly diverse visitors will have higher entropy.

3 DESIGN OF THE OUTSTANDING USER DETEC-
TION FRAMEWORK

In this section, we introduce our OU detection framework,
DeepPick. We restrict our discussion to the setting of OU
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detection in OSNs. We demonstrate the overall structure of
DeepPick in Section 3.1, and introduce input (i.e., reviews
and descriptive data of both users and locations) in Section
3.2 and 3.3. The choice of machine learning-based classifier
(the decision maker) is discussed in Section 3.4.

3.1 System Overview

DeepPick has three modules, namely the review processing
module, conventional feature extraction module, and the
decision maker module. The framework is shown in Fig.
1.

We utilize deep neural networks to characterize the
users’ sentiment features. Deep neural networks are now
successful in many fields, but their palatable performance
in generalizing may still require some theoretical expla-
nation [49]. To remedy the shortcoming, we also intro-
duce descriptive features to our framework. This heuristic
method is helpful in enhancing the interpretability of our
model. Before feeding the review processing module, we
order all review texts of each user chronologically, remove
stopwords/punctuations, and conduct lemmatization. For
the descriptive features, we leverage each user’s descrip-
tive profile and the attributes of the reviewed locations to
describe the user from the perspective of demographic and
location. Putting the subsets of features in Table 1 together,
the decision maker applies a supervised machine learning-
based classifier to predict whether a user is an OU or not.

In the following subsections, we introduce the building
blocks of DeepPick and discuss their contributions to the
final decision.

3.2 Review Processing

The reviews provide rich information over the users’ lifecy-
cle from different perspectives, revealing the difference be-
tween outstanding and normal users from a comprehensive
view. In DeepPick, all reviews of a user are analyzed mainly
from three angles: sentiment, linguistic, and temporal. We
leverage the TC-LSTM framework (see Section 4) as the
review processing module for sentimental analysis. Two
other analytical views are represented as follows.

3.2.1 Linguistic Features of Reviews
User-generated contents have long been used in under-
standing OSNs users, such as [50], [51]. Using the review
text, we investigate how linguistic aspects affect users’
outstanding status. Herein we adopt the users’ language
patterns as a proxy to look into their online actions and
engagement patterns in the community. LIWC [52], or Lin-
guistic Inquiry and Word Count, is our tool to demonstrate
the word-level characteristics of user reviews. LIWC counts
words in psychologically meaningful categories. It has been
widely used to detect how people’s daily spoken and writ-
ten text like, reveal their social relationships, thinking styles,
and individual differences [52].

Some selected review linguistic features are exhibited
in Table 2. The values represent the average occurrence
frequency of each specific set of words. Note that all types
of OUs share the same LIWC-based statistical features com-
pared with normal ones. The first column is the average

word count (WC) of the reviews, which correlates with psy-
chological meanings like talkativeness and verbal fluency
[52]. We can see that OUs’ average review length is longer
than normal users’. Also, as we show in Fig. 3, OUs always
post more reviews than others. This means OUs are more
proactive in online communities. The “Analytic” metric
captures the degree to which people use words that suggest
formal, logical, and hierarchical thinking patterns. OUs are
constantly higher in analytical, showing their tendency to
write and think in more categorical ways [53]. The “focus-
past” metric measures the frequency of using words and
past tenses that express past tense. OUs write more about
the past times, which indicates they are more practiced in
flashing back. With regard to the “social” (words referring to
social relationships, such as “family” and “friends”) metric,
OUs appear to have lower scores. The frequency of words
about leisure activities like “cook”, “chat”, and “movie”,
which belong to the “Leisure” category, is presented in the
last column. They are prone to appear more in OUs’ reviews.

3.2.2 Review Temporal Features
Reviews, as the major part of UGC, serve as a proxy of
users’ psychological and behavioral patterns. The content
shows how people think while the review time sequence
indicates the life span of their publishers. In this work, we
define that a user’s lifecycle starts when she posts the first
review on the platform and reaches the final stage when
she posts the last review. We divide the life span into five
segments based on the time duration. Each segment could
be interpreted as a life stage of real human life [3]. Fig. 2
and Fig. 3 show the average number of reviews people have
written in each life stage. Regardless of categories, OUs
share the same review patterns. All subsets of OUs write
more reviews in all of their life stages. They also share a
similar style in developing patterns: the contributing pace
of most OUs shows a consistent tendency of slowing down
in the first few stages but rising in the last stage. Normal
users also contribute more in their final life stage, which
means they are slightly engaging more in the communities.

3.3 Analysis of Descriptive Features
The geo-social network and users’ demographic features
are informative in user distinguishing. Hristova et al. [44]
validated that the bridging and bonding role of places could
reveal special attributes in social networks. On the other
hand, users’ descriptive information in their profiles is a
conventional feature in user distinguishing tasks [54], [3],
[55]. They are easy to access and beneficial.

3.3.1 Measurement of the Social Diversity of Locations
One of the fundamental social roles of locations is bonding
hubs. Some tend to bring along friends to interact with
each other, while some are more likely to gather otherwise
disconnected individuals. Pieces of literature show that
visitors’ diversity is in proportion to a place’s social roles.
For example, the visitors’ composition and social network
connectivity comply with the score of homogeneity [44].

We obtain the homogeneity of a place as in Equation
1. In this work, we use statistics (i.e., the mean, median,
maximum, minimum, and quartiles) of all locations a user
reviewed to depict her location preferences.
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Fig. 1. DeepPick Framework. For each user’s information in the input sequence, DeepPick extracts the sentiment features by using TC-LSTM, the
review processing module. Then, it extracts and normalizes other descriptive features to incorporate with the sentiment ones. After being aggregated
together, these feature sets are fed into the machine learning-based classifier for prediction.

TABLE 1
Subsets of features of the classification model

Sentiment Features
Si Sentiment analysis results output by the review processing module structure (i ∈ [1, 30])

Temporal Features
Review1 The number of reviews a user has posted in her first period of lifecycle
Review2 The number of reviews a user has posted in her second period of lifecycle
Review3 The number of reviews a user has posted in her third period of lifecycle
Review4 The number of reviews a user has posted in her fourth period of lifecycle
Review5 The number of reviews a user has posted in her last period of lifecycle

Location Features
Entropy The diversity of visits with respect to visitors

Homogeneity The extent to which a location’s visitors are homogeneous in their location preferences
Linguistic Features

WC Number of words per review
Analytic The degree to which people use words that suggest formal, logical, and hierarchical thinking patterns
focuspast The extent of using past focus words like “ago”, “talked”, “did”

social The extent of using social processes words like “mate”, “talk”, “they”
Leisure Frequency of occurrence of words in “Leisure” category, like “cook”, “chat”, “movie”

Demographic Features
Review count Total number of reviews the user have written

start time When the user posted the first review
Bk In Foursquare, this metric is the user’s k-th demographic attribute (e.g., number of venue lists)

Cj
In Yelp, this metric means the number of times the user has received the j-th category of compliments.
Possible compliment categories j include hot, cool, funny

3.3.2 Demographic Features

Demographic features could be extracted from each user’s
basic profile information. Different online platforms have
different feature sets. Introducing carefully selected features
will strengthen the detection framework. In our case, the
demographic features include the time when the user first
active on the platform (i.e., post the first review), how many
reviews she has given and some platform-specific metrics.
Specifically, Yelp describes users by a large number of
accomplished items (all started by “compliment ”), which
are helpful to find out whether a user is outstanding.

3.4 Decision Maker

DeepPick leverages a decision maker to conduct the final
judgment. The decision maker could be a classifier using
supervised machine learning algorithms such as CART deci-
sion tree [56], Random Forest [57], or boosting systems such
as XGBoost [58] and CatBoost [59]. Using the aggregated
features from both the review processing module and con-
ventional feature extraction module as input, the decision
maker is trained to classify whether a user is an OU or not.
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(a) SHS (Effective size)
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(c) Elite

Fig. 2. Yelp OUs’ review tendency. OUs in Yelp are much more active than normal users throughout their life span. The level of OUs’ engagement
keeps fluctuating but still sticks to a relatively high level, which indicates that the OUs in Yelp might be detected from a very early stage of their
lifecycle.
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(c) Ego-Betw

Fig. 3. Foursquare OUs’ review tendency. In Foursquare, the gap between OUs and normal users is smaller but still significant, especially at the
beginning of the lifecycle. Most of the Foursquare users show a tendency to become inactive.

TABLE 2
Occurrence frequency of different categories of words in OUs’ and

normal users’ reviews. NUs (Normal Users) are marked with
corresponding OUs’ category.

User Type WC Analytic focuspast social leisure

Yelp

SHS (E) 103.20 60.41 4.71 7.50 2.14
NU (S) 100.66 55.81 5.58 8.12 1.81

Degree 138.09 62.43 4.87 7.00 2.38
NU (D) 93.13 55.08 5.93 8.32 1.75

Elite 148.57 63.69 5.35 6.55 2.35
NU (E) 95.46 54.31 6.33 9.14 1.55

Foursquare

SHS (C) 48.57 82.52 1.35 5.05 3.00
NU (C) 13.06 79.95 1.11 5.23 2.51

SHS (H) 27.79 81.46 12.93 5.87 2.84
NU (H) 13.11 80.14 12.15 6.25 2.61

Ego-Betw 20.30 78.91 1.41 5.64 2.91
NU (B) 12.52 76.75 1.54 6.49 1.99

4 TC-LSTM: USER REVIEW ANALYSIS FRAME-
WORK

The reviews reveal what a user is thinking. It shows the
personal characteristics of users, which greatly help in dis-
tinguishing OUs. A user may produce thousands of reviews,
forming an interrelated text sequence with timestamps.
Such sequences are hard to interpret via traditional methods
and existing basic deep learning methods. To make the best
use of the information of reviews, we propose TC-LSTM to

extract sentiment features. It takes the review text sequence
produced by one user and is trained to predict the user
label. We then leverage the outputs of the LSTM layer as
sentiment features to depict the user. TC-LSTM (Section 4.1)
combines the advantages of TextCNN (Section 4.2) and Long
Short-Term Memory (LSTM) (Section 4.3) frameworks, and
performs better than both of them.

4.1 The Proposed Network Architecture

The middle part of Fig. 1 shows the network architecture of
TC-LSTM. It has two key components: TextCNN [60] and
LSTM [61], but can be trained with one loss function jointly.
In the training, the label for each user is whether she is
outstanding or not. TC-LSTM and the following machine
learning algorithm share the same training/validation and
test subsets.

Before being fed into TC-LSTM, the sequence of user
reviews will be represented by trained word2vec vectors
in a “Bag of Words” architecture [62] and padded to the
same length. Then, we extract reviews’ sentiment features
via the TextCNN component, which is constructed by tak-
ing the convolutional and max-over-time pooling layers
from a standard TextCNN model (fully-connected layers
are removed). It needs little tuning of hyper-parameters and
performs well in sentiment analysis. After the convolution
operation, we perform a nonlinear transformation on the
output. To maintain the nonlinear characteristics after the
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max-pooling operation, we use ReLU function to compress
the feature map output by the TextCNN component into
hidden variables.

The variables are later represented by sequences in order
to be invariant to the length variation of sequence-like
objects. By using the Bi-LSTM component, retained latent
sequential information could be captured. Bi-LSTM views
a sentence as a sequence of tokens and uses two LSTMs to
represent each token of the sequence based on both past and
future contexts. We employ it for its advantages in dealing
with long-distance dependency and successes in natural
language processing tasks [63].

4.2 Text Feature Extraction
For the TextCNN component, it first generates a word
matrix for each segment of words. It introduces a k-
dimensional word vector as xi ∈ Rk. Such a vector is corre-
sponding to the i-th word in the sentence. After padding to
n-length, a sentence could be represented as

x1:n = x1 ⊕ x2 ⊕ . . .⊕ xn, (3)

where ⊕ is the concatenation operator. After concatenation,
the word matrix will have a shape of n× k.

Second, TC-LSTM extracts sentiment features from word
matrix by involving filters for a window of h words in
convolution operations. A filter is represented by w ∈ Rhk.
The model uses multiple filters (with varying window sizes)
to obtain multiple features. In general, let xi:i+j refer to the
concatenation of words xi,xi+1, . . . ,xi+j . A feature ci is
generated from a window of words xi:i+h−1 by

ci = f(w · xi:i+h−1 + b). (4)

Here b ∈ R is a bias term and f is a nonlinear
function such as the hyperbolic tangent. A filter will be
applied to each possible window of words in the sentence
{x1:h,x2:h+1, . . . ,xn−h+1:n} to produce a feature map

c = [c1, c2, . . . , cn−h+1] , (5)

with c ∈ Rn−h+1.
The next step is to apply a pooling scheme to get the

corresponding features of each particular filter. In this step,
a max-over-time pooling function is applied over the feature
map and the maximum value ĉ = max(c) is used as the
target feature. In this paper, the fully connected layers in
TextCNN are removed to make the model more compact
and efficient.

4.3 Sequence-Based Classification
Recurrent neural network (RNN) has a strong capability of
capturing contextual information within a sequence. Tra-
ditional RNN units, however, suffer from the vanishing
gradient problem [64]. It limits the range of context RNN
can store and adds burden to the training process. For-
tunately, the LSTM structure can handle the long-distance
dependency between elements in a time sequence [61] better
than standard RNN. In particular, we choose bidirectional
LSTM (Bi-LSTM), which consists of forward (left to right)
and backward (right to left) LSTMs. According to the study

in [65], Bi-LSTMs outperform unidirectional LSTMs for clas-
sifying acoustic data into phonemes.

Furthermore, we apply Back-Propagation Through Time
(BPTT) in TC-LSTM. The sequence of propagated differen-
tials is concatenated into maps at the input of the Bi-LSTM
component. Then we invert the operation of converting
feature maps into feature sequences and feed them back to
TextCNN. To connect the two main components, we split
the output sequence of TextCNN into shorter segments as
the input of Bi-LSTM.

After the review processing, the LSTM component fi-
nally outputs m features, each represented by Si, i ∈
[1 . . .m]. The value of m could be adjusted.

5 IMPLEMENTATION AND EVALUATION

Having explained how DeepPick is designed, we turn to
study what parameters and building blocks should be cho-
sen to ensure the best performance of the OU detection
task. We present the details of training and implementing
DeepPick in Section 5.1. In Section 5.2, we conduct thorough
experiments to show the impact of equipping different
components on our framework’s detection performance,
the contributions of different feature groups and individual
features, and the most discriminative features for detecting
various types of OUs. Finally, we compare the results with
several state-of-the-art solutions. In Section 5.3, we present
a case study to figure out the difference between individuals
of different types.

5.1 Dataset Setup and Evaluation Metrics
To train DeepPick, we construct a training/validation subset
for each dataset with 80% users, and employ the rest 20%
as the test subset. Both subsets have the same distribution
of user type as the total population. We use 5-fold cross-
validation for the training/validation subset. We define the
loss function as

L = −
∑N

i=1(yilog(pi) + (1− yi)log(1− pi))
N

, (6)

whereN is the total number of users, pi is the probability
that the classifier makes a correct judgement on i-th user.
We optimize the parameters by grid searching. At the end
of training, the set of parameters that keeps L value lowest
will be chosen for the decision maker.

To complete the review classification task, we use Py-
Torch, a widely-used open-source machine learning frame-
work implemented in Python. In the preprocessing period,
we employ Continuous Bag-of-Words (CBOW) of Word2Vec
[66] to embed each sentence into 100 dimensions. Concern-
ing the parameters of TC-LSTM, for both datasets we use:
filter windows (h) of 2, 3, 4 with 10 feature maps each,
dropout rate (p) of 0.7. For the RNN layer, we set the
hidden size as 15, and two layers of Bi-LSTM are added.
The network is then trained with stochastic gradient descent
(SGD). The output number of dimensions, m, is set to 30. To
implement the decision maker, we use scikit-learn [67], a
Python-based machine learning library.

We adopt the following classic metrics to evaluate the
detection performance.
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Fig. 4. Comparison of how different neural network structures work in
the Yelp dataset. TC-LSTM performs the best in all cases.

• Precision: the fraction of detected OUs who are really
outstanding in the OSN.

• Recall: the percentage of OUs that have been uncovered
correctly.

• F1-score: the harmonic mean value of Precision and
Recall.

• AUC [68]: the probability that the classifier will rank a
randomly chosen OU more powerful than a randomly
chosen normal user.

• Mean Average Precision (MAP) [69]: Mean value of
average precision (AP (K)), which is the average of the
precision value obtained for the set of top-K OUs. MAP
is given by

MAP =

∑K
k=1AP (k)

K
(7)

5.2 Experiment Results

In the evaluation, we study different constructions of Deep-
Pick by equipping it with different neural network models
and decision makers to optimize the performance. We then
show the contributions of separate features to the final
decision and compare DeepPick with some state-of-the-art
solutions.

5.2.1 Comparison of Different Neural Network Models

Kim [60] proposed to use TextCNN to achieve good perfor-
mance when processing language. Also, Phased LSTM [70],
a recently emerging RNN for sparse sequences, reaches the
best result in the work of Gong et al. [55]. For comparison,
we measure the detection performance of these networks in
our dataset using SHS (E), degree centrality, and elite users
in Yelp.

We feed TextCNN and TC-LSTM with the same prepro-
cessed reviews of users and the Phased LSTM framework
with the time sequence of user reviews. Their detection
performance is compared in Fig. 4. From the result, we find
that TC-LSTM performs the best in all cases.

5.2.2 Comparison of Different Decision Makers
Several algorithms could work as the decision maker of
DeepPick. Classifiers, including tree boosting systems such
as CatBoost and XGBoost, classic machine learning algo-
rithms such as Random Forest (RF), and decision tree
(CART), are tested for DeepPick. We show the detection
performance and the corresponding parameters of all al-
gorithms in Table 3. Overall, the boosting methods perform
better than others. We utilize McNemars test [71] to examine
whether there exists a difference between two classification
algorithms by evaluating the statistical significance. We find
that XGBoost is different from the others. From the detection
performance concerning both F1-score and AUC value, we
see that XGBoost gets the best performance. In the following
experiments, we use XGBoost as the decision maker in
DeepPick.

5.2.3 Contributions of Different Feature Subsets
In this part of the experiments, we show which types of fea-
tures are more discriminative through ablation experiments
on different feature subsets. As a case study, we conduct
experiments on different types of OUs on both platforms.
F1-score is applied to evaluate the detection performance
of different approaches. First, we compare the performance
of DeepPick without each type of features. We subtract one
subset at a time and validate the performance degradation
accordingly. Table 4 shows that for the majority types of
OUs, sentiment features are the most discriminative in the
detection process, as the F1-score decreases the most when
the sentiment features are removed. In other cases, i.e., for
OUs judged by degree centrality and elite label in Yelp, the
set of demographic features is the critical subset. Second,
we start from a random guess classifier and add one feature
subset to it each time. This time, F1-score increases most
when demographic features are considered in most cases.
Correspondingly, sentiment features enhance the detection
performance most when demographic features are not the
best choice. The result implies that combining sentiment
features and demographic features into distinguishing pro-
cesses is able to increase the detection performance.

5.2.4 Contributions of Different Individual Features
We validate the importance of individual features in all
feature subsets by XGBoost. It calculates the importance
of the features according to their contributions to the de-
tection result. We plot the importance of each feature for
the classification in Fig. 5 and Fig. 6. We can see that in
many OU subsets, sentiment features extracted by using TC-
LSTM play an essential role. For structural hole spanners
on Foursquare, no matter what metric they are ranked by
and which dataset they come from, most top-10 features
that contribute to identify them are sentiment features.
Also, demographic features from Yelp user profiles (Cj)
like “compliments cool” and visited location features like
“homo min” (which means the minimal value of visited
locations’ homogeneity) contribute a lot to the final decision.

5.2.5 Detection Performance on Both Datasets
The detection performance of DeepPick (evaluated by F1-
score) in both datasets is shown in Table 5. It maintains high
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TABLE 3
Evaluation of different decision makers in the Yelp dataset

SHS (E) Degree Elite

Models Parameters Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC

XGBoost

learning rate=0.01, seed=0,
n estimators=900, gamma=0.1,
max depth=3, reg lambda=1,
subsample=0.6, reg alpha=1,
min child weight=1,
colsample bytree=0.6

0.915 0.917 0.916 0.914 0.953 0.919 0.935 0.940 1.000 1.000 1.000 1.000

CatBoost
l2 leaf reg=9, iterations=1000,
one hot max size=3, depth=4,
learning rate=0.1

0.915 0.912 0.914 0.912 0.948 0.918 0.933 0.937 0.999 1.000 1.000 0.999

CART criterion=’gini’, max depth=5 0.837 0.838 0.838 0.834 0.889 0.898 0.893 0.901 0.999 1.000 1.000 0.999

RF max depth=7, n estimators=130 0.919 0.910 0.914 0.913 0.954 0.907 0.930 0.935 1.000 1.000 1.000 1.000
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Fig. 5. Comparison of distinct features’ contributions in different types
of Yelp OUs. Sentiment features are represented by Si, i ∈ [1 . . .m]. In
this paper, m is set to 30.
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Fig. 6. Comparison of distinct features’ contributions in different types
of Foursquare OUs. checkin cnt, one of the users basic attributes, is
the number of people’s reviews. Sentiment features are Si, i ∈ [1 . . .m],
where m = 30. The results show that they are among the most decisive
features in all subsets.

TABLE 4
Ablation study on different feature subsets (F1-score)

Yelp Foursquare

Approach SHS (C) Degree Elite SHS (C) SHS (H) Ego-Betw

DeepPick 0.975 0.935 1.000 0.922 0.876 0.922
- Sentiment Features 0.898 0.926 0.991 0.872 0.716 0.755
- Temporal Features 0.972 0.857 0.991 0.912 0.837 0.867
- Location Features 0.962 0.846 0.995 0.910 0.828 0.862

- Linguistic Features 0.973 0.855 0.997 0.912 0.835 0.868
- Demographic Features 0.963 0.687 0.919 0.836 0.807 0.824

Random Guess 0.491 0.490 0.508 0.522 0.493 0.490
+ Sentiment Features 0.756 0.673 1.000 0.834 0.801 0.739
+ Temporal Features 0.837 0.811 0.932 0.666 0.582 0.562
+ Location Features 0.853 0.832 1.000 0.662 0.618 0.607

+ Linguistic Features 0.845 0.833 0.991 0.682 0.586 0.568
+ Demographic Features 0.889 0.933 1.000 0.867 0.699 0.755

accuracy in all subsets. In the case of elite users, the system
makes no error. The reason lies in that elite users usually
have some distinguishing demographic features in Yelp,
such as “funny” (Cf ) and “compliment cool” (Cc). Those
attributes make them especially recognizable. According to
Yelp3, their judging criteria of elites includes quality reviews
and photos, truthfulness of user identity, and user age. The
detection performance shows no explicit difference between
different types of OUs in the same dataset, which shows the
practicability of DeepPick.

5.2.6 Comparison with State-of-the-Art Solutions

We compare the performance of DeepPick with the follow-
ing special user detection algorithms for online communities
by both F1-score and a ranking-based performance metric,
MAP.
• Ma et al. [72]: This work developed an RNN-based

method to detect rumors and the users who spread
them in OSNs. RNN is used for learning the hidden
representations that capture the variation of contextual
information of users’ relevant posts over time.

• Katsimpras et al. [73]: This work ranks users according
to their topic-sensitive influence, basically based on
supervised random walks. Topics are extracted by LDA
[74].

• MCDE [75]: MCDE identifies high spreading power
nodes in social networks by mixing the value of a
node’s k-shell [76], degree, and entropy (represented by

3. https://www.yelp-support.com/article/What-is-Yelps-Elite-
Squad?l=en US
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the diversity of neighbors in different shells). To equate
the effect of these measures, the amounts of these three
parameters are configured as in the original paper.

• DeepInf [77]: DeepInf predicts users’ social influence
in OSNs. It first performs a random walk with a
restart probability γ, and the size of the sampled sub-
network is set to be w. Then, DeepInf uses a three-layer
GAT/GCN structure with r hidden units in both the
first and second GAT/GCN layers, while the output
layer contains 2 hidden units for binary prediction.

The result of the comparisons by F1-score is shown in
Table 6. Evaluations based on ranking-based performance
metric (MAP) are also shown in Table 7. We can see that the
other solutions normally perform well in identifying one
type of OUs but fall behind in others. Even in the case they
are most good at, DeepPick achieves higher performance
than them.

As the available data might only contains a limited
part of the social graph, many related methods could not
work in this situation, including traditional structural hole
spanners detection algorithms [32], [18], GNNs [77], [78],
and structure learning methods [79], [80]. Specifically,
we take DeepInf [77] as an example. In our experiments,
we apply DeepInf-GCN instead of DeepInf-GAT because
DeepInf-GCN performs better in our dataset. We select
γ = 0.8, w = 10, r = 256. For the embedding layer, a
64-dimension network embedding is pre-trained. To mini-
mize the effect of missing the connection information, we
feed DeepInf with a subgraph of largest connectivity in
the dataset, which contains 10,000 edges and 7,549 nodes.
The OUs in the sampled dataset are the SHS ranked by
effective size. As in [77], we allow DeepInf to run at most
1,000 epochs over the training/validation subset and select
the best model by early stopping. However, DeepInf only
reaches AUC=0.613, Precision=0.228, Recall=0.669, and F1-
score=0.340. We attribute the inferiority to the limited sizes
of sampled networks, which cannot be very large due to
the scant number of nodes in 1-hop neighborhood (i.e., ego
network). Unfortunately, as some users choose to hide their
friend lists from the public nowadays, it would be much
more difficult to acquire neighborhoods larger than 1-hop
for third-party service providers and researchers.

So far, the experiments are conducted based on datasets
containing 10,000 OUs. However, some platforms might not
be able to provide so many OUs’ information. We conduct
more experiments to validate the practicability of our pro-
posed framework when the given outstanding user set is
small, i.e., 100 and 1,000. The results are also shown in Table
6 and Table 7. The deduction in training OU numbers will
slightly degrade the performance. However, by comparison,
our method still performs better than the baselines even
with less OUs.

5.3 Case Study

Since we have already illustrated that DeepPick outper-
forms existing approaches and shown the contributions of
different features, we look into the detailed feature differ-
ence of different types of OUs by case studies. We randomly
select 100 OUs and 100 corresponding normal users of each
type to compare their features. We choose one feature that

TABLE 5
Experiment results of the two datasets

Subset Precision Recall F1-score AUC

Yelp

SHS (E) 0.915 0.917 0.916 0.914
SHS (C) 0.976 0.975 0.975 0.975
SHS (H) 0.928 0.934 0.931 0.931
Degree 0.953 0.919 0.935 0.940

Ego-Betw 0.973 0.953 0.963 0.963
Elite 1.000 1.000 1.000 1.000

Foursquare
SHS (C) 0.915 0.929 0.922 0.915
SHS (H) 0.876 0.901 0.892 0.844

Ego-Betw 0.916 0.925 0.921 0.886

TABLE 6
Performance comparison with existing methods (F1-score)

Yelp Foursquare
Models SHS (E) Degree Elite SHS (C) SHS (H) Ego-Betw

Ma et al. 0.751 0.613 0.811 0.795 0.620 0.693
Katsimpras et al. 0.677 0.696 0.835 0.723 0.681 0.571

MCDE 0.611 0.908 0.673 0.916 0.568 0.474
DeepPick (100OUs) 0.903 0.910 0.999 0.903 0.816 0.835

DeepPick (1,000OUs) 0.913 0.925 0.999 0.911 0.824 0.858
DeepPick 0.916 0.935 1.000 0.922 0.876 0.922

shows the most significant difference from each category
of features in Fig. 7. Normal users in Yelp hardly write
reviews and tips, thus win almost no points on the features
of compliments like “funny”. The average entropy of the
places they visit is only about 30% of that of OUs. The value
of sentiment features (Si) also exhibits a vast difference be-
tween normal users and OUs. In general, sentiment features
have opposite trends, i.e., normal users are scored higher
on sentiment features than OUs. In Foursquare, normal
users prefer locations whose homogeneity metric values
are 6-8 times higher than OUs. They write fewer words
in their reviews, have shorter lists, and post reviews in a
lower frequency. Foursquare’s normal users show the same
pattern as Yelp’s when it comes to sentiment features. This
result indicates that the OUs and normal users are quite
distinguishable by those features. Besides, OUs valued by
different strategies may share the same pattern compared
with normal users. The outcome confirms that users with
rich information in the service are more likely to be out-
standing.

6 RELATED WORK

6.1 Social Graph-Based User Detection

Identifying the most efficient “spreaders” in a network is
essential in many real-world applications, such as optimiz-
ing the use of resources and ensuring that the informa-
tion spreads more efficiently. The most straightforward and

TABLE 7
Performance comparison with existing methods (MAP)

Yelp Foursquare
Models SHS (E) Degree Elite SHS (C) SHS (H) Ego-Betw

Ma et al. 0.697 0.622 0.791 0.770 0.698 0.688
Katsimpras et al. 0.643 0.610 0.815 0.769 0.684 0.625

MCDE 0.576 0.808 0.602 0.852 0.521 0.545
DeepPick (100OUs) 0.880 0.877 0.881 0.859 0.757 0.775

DeepPick (1,000OUs) 0.910 0.894 0.896 0.875 0.764 0.811
DeepPick 0.919 0.988 0.999 0.884 0.771 0.819
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Fig. 7. Case study of each type of OUs compared with all normal users. The y-axis is in log scale. This graph shows the mean value of randomly
selected 100 users of each category. In Yelp, the value of essential features is similar for different types of OUs, while normal users show low scores.
In Foursquare, the gap between OUs and normal users is also apparent.

prevalent detecting strategy is to make use of the structure
of the social graph.

For detecting SHS, Lou et al. [32] designed algorithms to
identify SHS based on given communities. This solution is
not able to work when community boundaries are missing
or blurred, which is not unusual. Inspired by the intermin-
gled nature of SHS and user communities, He et al. [20]
proposed a harmonic modularity method to detect them
simultaneously. However, their algorithms only fit small
graphs due to the high space complexity (O(n2)) and time
complexity (O(cn3)) [18]. To reduce the running time, Xu
et al. [18] later adopted filtering techniques to estimate SHS
from articulation points.

For detecting influential users, the criteria are generally
based on the network structure [34], such as PageRank,
degree, and betweenness centrality [81]. In applications
such as citation impact analysis, measurements like H-
index [82] could also be used. Works using methods like
Hyperlink-Induced Topic Search (HITS) [39] and PageRank
[83] equipped one of the measurements mentioned above
to find the most influential set of users. However, when the
network is large, a collection of different nodes is likely to
be ranked the same by a single metric. Thus, some works
like [75] consider multiple metrics together to select top-K
influentials.

Many previous works [32], [20], [18] discover users of
the target category by analyzing network structure features
of nodes. Calculating those features, however, requires the
structural information of the entire social network. The
computation will become time-consuming as the network
grows larger while fail to be launched when the available
network information is incomplete. Instead, our framework
merely requires the ego network structures of less than 1%
of users in the network, which is easier to acquire. Once
trained, our framework could predict whether a user is an
OU only through accessible information like UGC and user
profile.

6.2 Deep Learning-Based User Detection with Social
Networks
Another line of research on user detection benefits from the
emergence of deep learning methods. Generally, researchers

make use of either or both of the network structure and
the UGC. Several related approaches have been proposed to
find some specific types of OUs.

On one hand, the graph structure is widely utilized. For
example, Wei et al. [84] used network representation learn-
ing to find overlapping communities in the network, then
combined the community information and node topology to
rank influential nodes. Keikha et al. [85] proposed DeepIM
algorithm to detect the most influential nodes inside and
between interconnected social networks by their local and
global structural properties. These works learn to represent
the structure of the whole graph by feature vectors. If
the input graph is fragmentary, their neural network can
not learn network representations accurately. Different from
those works, DeepPick utilizes neural networks to deal with
existing UGC and only needs some users’ local network
information in the training process, which enhances its
feasibility.

On the other hand, user actions on online platforms also
provide rich information for distinguishing OUs. Such infor-
mation includes various respects of a user’s online lifestyle,
e.g. information cascades [77], [19], [86], user interest [87],
and user interactions [78], [88]. Deep learning methods are
effective in extracting latent key information, e.g., text and
time series. To make the best use of all dimensions of data,
we propose to incorporate accessible node-level features
with UGC, which enhances the scalability of our method.

6.3 Graph Neural Networks
Recently, there has been a surge of interest in graph neural
network (GNN) approaches. For each node, GNN recur-
sively updates its representation by aggregating the repre-
sentation of its neighborhood. After K iterations, the K-hop
neighborhood’s structural and representation information
will be aggregated into the current node’s representation.
GNNs have been successfully applied to social network
mining, including social influence prediction [77], [89], node
popularity detection [90], and diffusion prediction [91].
These works all take the embedding vectors to solve the
link prediction tasks, which is related to our work.

User interaction information is significant to GNN-
based works. For instance, Inf-VAE [91] predicts diffusion
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by modeling the joint effect of temporal embeddings and
social embeddings, which are learned from users’ social
connections. Differently, CoupledGNN [90] does not rely
on temporal information, but still emphasizes the role of
the interacting network, i.e., the cascading effect along with
users’ interactions, in popularity prediction problems. Cou-
pledGNN aggregates the expected influence a user receives
from her neighborhood as the evidence in popularity predic-
tion. These works achieve good performance in predicting
influence, but do not launch well in the incomplete graphs.
We will further discuss the practicability of applying GNN

in Section 7.1.

7 DISCUSSION

In this section, we discuss some design issues of our pro-
posed framework. In Section 7.1, we present the possibility
of adopting GNNs in this task. In Section 7.2, we compare
the computational efficiency of our method and several
other algorithms. We show the extent to which OUs is
overlapping with active users in the platforms in Section
7.3.

7.1 Practicability of Graph Neural Network
In our model, the ego network is introduced as a variant
of GNN. The learning process of DeepPick is inspired by
GNNs but relies much less on the knowledge of network
structure to perform well. As GNN does, we also aggregate
the features of nodes’ neighborhood, but adopt multimodal
data of the nodes instead of leveraging the structural infor-
mation of nodes only.

Two obstacles are preventing the direct application of
GNNs in this task. First, GNNs represent each node by
aggregating its neighborhood’s representation via methods
like random walks [77], matrix factorization [92], or GCN
[93]. The aggregation expands along with the underlying
network edges. If there is a partial absence of the network
structure, the detection performance will be degraded [90].
Although some approaches show applicability with the
dropout of the network under the premise of network con-
nectivity (e.g., CoupledGNN [90]), they are not applicable
when only isolated ego networks are provided, which is
common due to users’ privacy concerns. Second, all the
embeddings of nodes are required to be well-trained in
GNN. For third-party service providers who desire a quick
user distinguishing process, GNN’s computation complex-
ity is still high and unacceptable using large-scale OSN
data. Thus, a tradeoff between detection performance and
efficiency is urgently needed.

7.2 Time Complexity Analysis
As stated above, we analyze the computational complexity
of our approach in the style of GNNs. Let |V | be the number
of nodes in network G, K be the dimension of embedding
vectors, L be the number of layers, D be the average degree,
and s be the number of sampled nodes per layer. For
simplicity, assume s remains equivalent across all layers of
GCN. For other graph-based algorithms like PageRank, all

nodes are required for the calculation. The time complexity
of convergence could be O(t(ε)|V |2), where t(ε) is the
number of iterations with convergence threshold ε. For the
GCN-based algorithms, the training process is about impor-
tance sampling. Take node-wise sampling techniques with
minibatch training as an example. The sampling algorithm
iteratively samples nodes of each layer to form minibatches,
then propagate forward and backward among the sampled
GCN. In the forward process, for each batch of b nodes,
we update O(sL−1) activations for each node. As each new
activation requires to aggregate s embeddings in previous
layers, the computation cost for neighborhood propagation
in one batch is O(bKsL−1). The time complexity of the
representative sampling process, e.g., constructing an alias
table [94], is O(D). Thus, the overall forward time com-
plexity is O(bDKsL−1). In the backward propagation, GCN
also needs O(sL−1) to update parameters. For DeepPick,
only the current central node is sampled to conduct the
gradient descent process (L = 1), which largely reduces the
number of nodes taking part in the training. In that sense,
the backward propagation time is reduced to O(1).

7.3 Overlap with Active Users

Here we want to illustrate the difference between OUs and
another highly-mentioned type of users in OSNs, the active
users. Active users are often those who post more UGC
in OSNs [95]. In contrast, the OUs are the first activated
node group in the IC model, denoted as A0 in our paper.
When acting as the information source, OUs can spread
information in social networks faster than others. However,
active users will not be able to spread information widely if
their UGC are not popular.

Here we define overlap rate as the proportion of active
users in OUs and correlation index as the Pearson correla-
tion coefficient between review number sequences of OUs
and active users. We rank the users by their numbers of
reviews and select the top 10,000 as active users, which is
of the same number as sampled OUs and normal users.
The percentage of users who are both active users and OUs
simultaneously is shown in Fig. 8. Yelp’s active users are
more likely to become OUs, as Yelp offers many awards
to encourage posting reviews. We notice that OUs with
high degree centrality overlaps the most with active users
in both datasets. Furthermore, the correlation index values
between different types of OUs and active users are small
and negative. Thus, we could find that being an active user
and being an OU are not highly correlated. Overall, some
weak relationships exist between being an active user and
being an OU, but publishing many UGC is not a guarantee
to become an OU.

8 CONCLUSION AND FUTURE WORK

In this paper, we defined the concept of OUs in OSNs
and proposed a mixed metric selection strategy to discover
them. To manifest its detection performance, we designed
and implemented DeepPick, a deep learning-based OU de-
tection framework. DeepPick only needs a small fraction of
users’ information (i.e., ego networks, demographic data,
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Fig. 8. Overlap rate and correlation index of top OUs and active users in both datasets. Although a small part of OUs are also active users, the two
groups’ review number sequences show a slightly negative correlation.

UGC, and visited POIs) to train. After bootstrapping, it will
be able to detect OUs by using the users’ publicly visible
information. Extensive experiments on representative OSNs
validate the effectiveness of our strategy. Also, DeepPick is
compatible with different types of OUs, which is indeed an
advantage of our system. According to our evaluation on
several example definitions of OUs, DeepPick outperforms
the existing solutions. This study sheds light on the path to
unveil OUs in OSNs when the network structure is not fully
accessible, which is a common case. It is useful for different
relevant entities, such as OSN operators, third-party service
providers, and academic researchers.

In future work, we will further study the effectiveness
of combining more features in the framework. There are
two types of features that can be considered. First, in the
fields of diffusion prediction, social homophily and tem-
poral influence are shown to be crucial indicators [91]. We
would like to examine if they are also likely to provide more
information about the OUs. Second, popularity evaluation
[90] of OUs is also worth exploration. We will study how
the users’ popularity level correlated with their outstanding
features.
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